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Self-steering Particle Model

O Position vector: r f

d Normalized velocity: x = ﬂ
r X
d Unit vector perpendicular to normalized velocity: y

Q Speed: v = |1 y
d Steering Control: u

I.',l;: V;X;

d Dynamics of ¢ -th agent: | x,= v;u;y;

Yi—= —ViuiX;
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Mutual Motion Camouflage (MMC)

A Inspiration: Dragonfly foraging and territorial battles
d 2 agents, pursuing each other
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Mutual Motion Camouflage (MMC)

d Problem: Small perturbations were drifting the system away from the desired
orbit.

O Solution: Introduction of Dissipation.

kd>0

O Modified feedback control law: [u = — A+ kd)\’y(E(p, 'Y) - Ed)] E; = E(po, o)
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Topological Velocity Alignment (TVA)

A Inspiration: Starling murmuration
d Each of N-agents pays attention to its k-nearest neighbors.
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Q Velocity of Neighborhood Center of Mass: | vconm = Z VX, Nj: neighborhood
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*B. Dey, “Reconstruction, Analysis and Synthesis of Collective Motion”,
PhD Thesis, University of Maryland, College Park, Feb 2015.




Topological Velocity Alignment (TVA)

dFeedback Control Law: [uz = (ﬁ) [X_N‘i y@ﬂ pu>0
Vi

Special Case: 2-agent System

d Closed Loop Shape Dynamics:

\fb e X1 p = 1108 — vy cos(h — @)
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O Contrast Function: © =1 —cos¢
Theorem

If ©(0) # 2, i.e. if the agents are not heading directly away from each other initially,
©(t) converges to zero asymptotically.



Topological Velocity Alignment (TVA)

d Problem: Direction of motion becomes undefined whenever the neighbourhood
center of mass velocity vanishes to zero.

d Solution:
d A heuristic approach to tackle this singularity.
d This is done by appending another agent into the neighborhood of the focal
agent whenever the velocity of its neighborhood center of mass vanishes.
d Result:
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Future Directions

d Effect of a beacon (influencing both agents) into MMC.

d Equip a single agent with extra information about the environment
and understand its effect on the entire swarm.

d Study the effect of sensor noise and perform robustness analysis.
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