Biomimetic Algorithms for Coordinated Motion: Theory and Implementation

Udit Halder¹, Biswadip Dey²

¹Department of Electrical & Computer Engineering & ¹Institute for Systems Research University of Maryland, College Park, MD

²Department of Mechanical & Aerospace Engineering, Princeton University, Princeton, NJ

Background and Motivation

Self-steering Particle Model

Position vector: r
Normalized velocity: $\mathbf{x} = \frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|}$ Unit vector perpendicular to normalized velocity: y

□ Speed: $\nu = |\dot{\mathbf{r}}|$ □ Steering Control: u

 \Box Dynamics of i -th agent:

$$\dot{\mathbf{r}}_{i} = \nu_{i} \mathbf{x}_{i}$$
$$\dot{\mathbf{x}}_{i} = \nu_{i} u_{i} \mathbf{y}_{i}$$
$$\dot{\mathbf{y}}_{i} = -\nu_{i} u_{i} \mathbf{x}_{i}$$

Vicon Motion Capture

0

5.3

0

ROS Workstation

Pioneer-3 DX

DO

Mutual Motion Camouflage (MMC)

Inspiration: Dragonfly foraging and territorial battles
 2 agents, pursuing each other

Feedback control law*: $u = -\mu\lambda$ $\mu > 0$, $\lambda = \frac{\mathbf{r}_{12} \cdot \dot{\mathbf{r}}_{12}^{\perp}}{|\mathbf{r}_{12}|}$ Reduced dynamics: $\dot{\rho} = \gamma$ $\dot{\gamma} = (1/\rho - \mu) \left(\delta^2 - \gamma^2\right)$ $\rho = |\mathbf{r}_{12}|, \quad \gamma = \frac{\mathbf{r}_{12} \cdot \dot{\mathbf{r}}_{12}}{|\mathbf{r}_{12}|},$

$$\Box \left[E(\rho, \gamma) = \rho^2 (\delta^2 - \gamma^2) e^{-2\mu\rho} = \text{Conserved Quantity!} \right]$$

Phase portrait of the reduced dynamics*

*M. Mischiati and P. S. Krishnaprasad, "The dynamics of mutual motion camouflage," Systems & Control Letters, 61(9):894–903, 2012.

Mutual Motion Camouflage (MMC)

- Problem: Small perturbations were drifting the system away from the desired orbit.
- □ Solution: Introduction of Dissipation.

$$\square \text{ Modified feedback control law:} \underbrace{u = -\mu\lambda + k_d\lambda\gamma(E(\rho,\gamma) - E_d)}_{E_d = E(\rho_0,\gamma_0)} \begin{array}{l} k_d > 0 \\ E_d = E(\rho_0,\gamma_0) \end{array}$$

Topological Velocity Alignment (TVA)

□ Inspiration: Starling murmuration

□ Each of *N*-agents pays attention to its *k*-nearest neighbors.

*B. Dey, "Reconstruction, Analysis and Synthesis of Collective Motion", PhD Thesis, University of Maryland, College Park, Feb 2015.

Topological Velocity Alignment (TVA)

□ Feedback Control Law:

$$u_i = \left(\frac{\mu}{\nu_i}\right) \left[\mathbf{x}_{\mathcal{N}_i} \cdot \mathbf{y}_i\right] \quad \mu > 0$$

Special Case: 2-agent System

losed Loop Shape Dynamics:

$$\dot{\rho} = \nu_1 \cos \psi - \nu_2 \cos(\psi - \phi)$$

 $\dot{\psi} = -\mu \sin \phi - \frac{1}{\rho} [\nu_1 \sin \psi - \nu_2 \sin(\psi - \phi)]$
 $\dot{\phi} = -2\mu \sin \phi$

Contrast Function: $\Theta = 1 - \cos \phi$

Theorem:

If $\Theta(0) \neq 2$, i.e. if the agents are not heading directly away from each other initially, then $\Theta(t)$ converges to zero asymptotically.

Topological Velocity Alignment (TVA)

Problem: Direction of motion becomes undefined whenever the neighbourhood center of mass velocity vanishes to zero.

□ Solution:

□ A heuristic approach to tackle this singularity.

□ This is done by appending another agent into the neighborhood of the focal agent whenever the velocity of its neighborhood center of mass vanishes.

□ Result:

http://ter.ps/ICRA205

Future Directions

- □ Effect of a beacon (influencing both agents) into MMC.
- □ Equip a single agent with extra information about the environment and understand its effect on the entire swarm.
- □ Study the effect of sensor noise and perform robustness analysis.

Thank you!

