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Some tasks/missions can be accomplished
more effectively by groups/collectives of
autonomous agents

- Environmental Monitoring

- Search & Rescue

- Intelligence, Surveillance &
Reconnaissance (ISR)

ONR'’s demonstration of prototype tube-launched UAVs in April 2015.
Snapshot from: https://www.youtube.com/watch?v=8FukTsKmXOo

Collective control uses local/pairwise
interactions to generate desired global
motions

- Efficiency
- Robustness

ONR'’s demonstration of CARACaS (Control Architecture for Robotic Agent Command and Sensing)

in August 2014.

http://www.onr.navy.mil/Media-Center/Press-Releases/2014/ autonomous-swarm-boat- 2
unmanned-caracas.aspx



Pursuit Based Collectives

 Pursuit interactions as a building block for collective control

STARFLAG project

UW-Milwaukee Bio Sciences

» Cyclic Constant Bearing (CB) pursuit can generate circling, spiraling & rectilinear

motions
- Limitation: Location and Size of the formation depends on initial conditions
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Galloway, Justh, Krishnaprasad, “Symmetry and Reduction in Collectives: Cyclic Pursuit Strategies”, Proc. R. Soc. A, 2013.

« Later work introduced an external reference (i.e. a beacon) based framework

- Can represent a distress signal, resource peak, region of interest, etc.
Galloway, Dey, “Station Keeping through Beacon-referenced Cyclic Pursuit”, ACC 2015.



Overview

@ Modeling

@ Reduction to Shape Space

@ Local Stability of Relative Equilibria
@ Separation of Size and Pure Shape

@ Pure Shape Equilibria

@ Future Directions



Key Ingredients for a Multi-agent Collective (MaC)

Agent Dynamics

Multi-agent
Collective

<—> Attention Graph



Modeling: Moving Agents

Position vector: r

Natural Frenet frame: [x y]

Unit tangent vector: x = ﬁ
r

Speed of the trajectory:v = |r|

d Agent Dynamics:
()= v(t)x(t)
x(t)=v(t)u(t)y()

y(t)= —v(t)u(t)x(?)

[ Beacon modeled as
a particle with zero
speed and arbitrary
frame orientation.



Modeling: Attention Graph

@ Individual agents are perceived as vertices in a directed graph: G = (V,€&)
@ Vertex Set: V={1,2,--- ,n}
@ Edge Set: ¢ = {(i,j) eV x V|Agent i pays attention to Agent j}

Cycle with Spokes



Modeling: Beacon Referenced CB Pursuit Control Law

B Weighting factor
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Reduction to Shape Space (of relative Position & Orientation)

To describe the relative configuration
between individual agents, and
between agents and the beacon, we
introduce scalar shape variables.

¢Xz'—1

@ Consistency Condition
pile = pisR(Kip — ki) + piv1pBR(Kit16 — 0iv1)
@ Cycle Closure Constraint

R(Z(W + K — 92:4-1)) =I5

1=1



Closed Loop Shape Dynamics

— Individual speeds are constant and equal. (v; = 1)

— Controller gains are equal and common for every agent. (; = pip = 1)
The bearing angles for the neighbors are equal for every agent. (o; = @)
- The bearing angles for the beacon are equal for every agent. (a;, = ap)

Assumptions
I

P;i= — ( COS K; + COS 92'+1)
A

K= —,u[(l — A)sin(k; — a) + Asin(kqp — ozo)} 4 — [sin K; -+ sin 9i+1}
Pi
: , 1 - . . 1 . .
0,= Kk; — — [sm Ki + sin 97;+1] + [Sll’l Ki_1 + sin 6’@-]
Pi Pi—1
Pib= — COS Ky
. . 1. . : |
Rip=— K; — — [Sm K; -+ SIn 9,,;+1] + —— SIn K,
Pi Pib

Subject to consistency and closure constraints. 10



Closed Loop Shape Dynamics

— Individual speeds are constant and equal. (v; = 1)

— Controller gains are equal and common for every agent. (; = pip = 1)
The bearing angles for the neighbors are equal for every agent. (o; = @)
- The bearing angles for the beacon are equal for every agent. (a;, = ap)

Assumptions
I

pi= Inter-agent range dynamics

k;= Line-of-sight Angle to Pursuee dynamics

9@2 Line-of-sight Angle to Pursuer dynamics
piv= Agent-Beacon range dynamics

Kip= Line-of-sight Angle to Beacon dynamics

Subject to consistency and closure constraints. 11



Relative Equilibrium (BD,KSG,ACC’15 - Proposition 4.1)

Proposition: Consider an n-agent beacon-referenced cyclic pursuit system,
parametrized by u, A, @ and ag. Then, the only possible relative equilibria are
circling equilibria. Furthermore, whenever na is not an integral multiple of
7, a circling equilibrium exists if there exists m € Z such that

(i) Acosag+ (1 — A)sin (22X —a) > 0, and

(ii) sin (27) > 0.

_omT 0. — (1 m
T @_( _E)” {+ CCW
+
I{ib=:|:7T/2
2\ sin —”) A

pib = o
)

pAcos ap £ p(l — A)sin (25 — o

12

~ p(l—N)sin (T — ) £ pAcosag



Relative Equilibrium: Local Stability Analysis

) Pi i [ p;‘ i C’L :A0<i+A1Ci+1+A_1C’£—1
Ki Ky ] ] ] _
o 9. | — | o* 0O = 0 0 0 0O 0 = 0 0 0O 0 0 0 O
Cz— ? )
‘ - x* % 0 0 = 0O 0 = 0 0 0O 0 0 0 O
Pib pib A= % % % 0 x A =10 0 = 0 0 A =% % 0 0 0
_\’fib_ | b 0 0 0 0 = 00 0 0 0 00 0 00
—~— ERE R 00 % 0 0 0000 0]
Perturbation around an Equilibrium
Linearized Dynamics is Governed by:
A, A, AT
A—1 Ao A'l
A A A
A =
Al
A, A,




Relative Equilibrium: Local Stability Analysis

Proposition: The eigenvalues of A are given by the union of the eigenvalues of
A+ A +A4,
A, +wA, +w A

—! 215 /n

., wWhere w =-¢ is the n-th root of unity.

A, +w' A +w (P4

Theorem: A necessary condition for stability of a counter-clockwise (CCW)
circling equilibrium is given by
elsinag + (1 — A)cosa™ > 0.
Furthermore, if n is even, the following conditions should also hold true:
ecosa”™ >0,

o(1—\) (cos " + acot(m)) + Asinag > 0,

n
o(1 —\) (a2 + (b +a(l— ) cot(%)) COS a*) cot(%) + Aasin ag > 0.

a=cosap+ (3 — 1)sina*, of = (25) —q
14



Extraction of Pure Shape

@ Change of variables allow us to separate out

the SCALING aspect of the formation.

1i={1,...

;n}

@ Constraints:

R (Z(W — ;)

=1

)-x

12

pivR (i) + Pit1,pR(Pix1,p — VYit1) = pilla

1
F;

n

1

ki =0

=1

=1

15



Dynamics of the new variables
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Pure Shape Equilibria

Proposition: For any k € {1,2,...,n}, the manifold M; defined by

M, & {%1,;01, {Ri, iy Giby Piy Pib}iq | Bi =0, p; = 1,

n — 2k n — 2k _ 1
= (52 on- (52 e

n

is nonempty and invariant under the closed loop dynamics. Furthermore, the
2-dimensional reduced dynamics on the invariant manifold is given by

k 2\ k k
I%Zl = — M [(1 — )\) Sin(lil — Of) + )\ COS (1{1 — % — Oé())] + — COS(KJl — —ﬂ-) Sin (—ﬂ-)

P1 n n
: ( 2k7r>
p1 = —COSK1 +COS|KT —— .
n
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Future Work

@ Coverage through Beacon-referenced Cyclic Pursuit

@ Multiple Beacon
3
2/ \4/’
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