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Physics-informed ML provides a bridge between the real and the digital 

Real-world systems often lack good quality data but come with lots of 
domain knowledge!

ML
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ObservablesSystem 
Dynamics

FORWARD PROBLEM
• UNIQUE SOLUTION

INVERSE PROBLEM
• NON-UNIQUE SOLUTION

Need to use appropriate inductive bias!

The inverse problem of inferring dynamics from data needs relevant inductive bias

Energy-based descriptions!
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Hamiltonian dynamics and port-Hamiltonian formulation provide a relevant 
indictive bias for a broad class of physical systems
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Lv, Gregg | IEEE Tr. CST | 2018

Benedito, et al. | Control Engineering Practice | 2019
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Hamiltonian dynamics

Sir William Rowan Hamilton 
(1833)
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q Generalized Coordinate – 𝑞
q Generalized Momentum – 𝑝
q A Conserved Quantity – 𝐻, i.e., the Hamiltonian

- It usually represents the total energy 

q For physical systems, the total energy is: 

q An alternative description is provided by the Lagrangian Dynamics, in which the 
system is described in terms of generalized position (𝑞) and generalized velocity (�̇�). 
These two sides are related via Legendre Transformation, i.e., 𝑝 = 𝑀 𝑞 �̇�.
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Hamiltonian dynamics with control offer a natural framework for modeling a 
large class of systems
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External Control: 
- Force, Torque, etc.

�̇� = 𝐽 𝑥 − 𝐷 𝑥 ∇$𝐻 + 𝑔 𝑥 𝑢
𝑦 = 𝑔! 𝑥 ∇$𝐻

Port-Hamiltonian System: 

Skew-symmetric
Symmetric, Positive-semidefinite

Pendulum Cart-pole Acrobot

�̇� ≤ 𝑦!𝑢
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How do we encode Hamiltonian dynamics into neural networks for 
learning dynamics from data?

Data Driven Approach: Learn a dynamical system governed by a set of 
differential equations from data 

Prior: 
Symmetries and Conservation Laws

• Improved model transparency
• Model-based control synthesis
• Better generalization
• Data-efficiency
• Increase in learning speed

Our Solution: Symplectic ODENet
Encode Hamiltonian dynamics into the architecture of a neural network

* Zhong, BD, Chakraborty | Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control | ICLR 2020.
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Symplectic ODENet encodes Hamiltonian dynamics into neural networks
Available data: 𝑞, 𝑝, 𝑢	 !!,⋯,!"

q Leverage Neural ODE[❡]

§ Consider an ODE – �̇� = 𝑓! 𝑥, 𝑢 , where 𝑓! 𝑥  is parametrized by a neural network
§ Use Neural ODE Solvers to obtain:  -𝒙"!, -𝒙"", … , -𝒙"# = 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒(𝒙"$, 𝒇!, 𝑢, 𝑡#, … , 𝑡$)

§ Minimize an appropriate penalty function 𝑑 =,=  (e.g., MSE, MAE) to find a suitable 𝑓! =

𝐿 =?
%&'

$

𝑑(𝒙"% , -𝒙"%)

Symplectic 
ODENet

𝒇$ 𝒒, 𝒑, 𝒖 =

𝜕𝐻$#,$$
𝜕𝒑

−
𝜕𝐻$#,$$
𝜕𝒒

+
𝟎

𝒈$%(𝒒)
𝒖

𝐻$#,$$(𝒒, 𝒑) =
1
2	𝒑

%𝑴$#
&' 𝒒 𝒑 + 𝑉$$(𝒒)

§ 𝑀!!
(' 𝑞 = 𝐿!!𝐿!!

) 	- Fully-connected Feedforward Network

§ 𝑉!"(𝑞)	- Fully-connected Feedforward Network
§ 𝑔!&(𝑞) - Fully-connected Feedforward Network

We use mean-squared error (MSE) as the penalty function!

[❡] Chen, Rubanova, Bettencourt, Duvenaud | Neural Ordinary Differential Equations | NeurIPS 2018.
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Can Symplectic ODENet infer the dynamics of a pendulum from data?
q Prediction of test trajectories (𝑢 = 0)

q Functions learned by SymODEN
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Bridging this gap through an angle-aware Design

q Theoretical perspective: Convenient to deal with independent generalized coordinates 
and momenta, i.e., 𝑞, 𝑝 .

q Data-driven perspective: Angle coordinate – 𝑞 – is often embedded in (cos 𝑞 , sin 𝑞) 
format, since treating 𝑞 as a variable in ℝ' fail to respect the geometry that 𝑞 lies on the 
manifold 𝕊'. Also, the velocity data – �̇� – is often more readily available than the 
momentum data 𝑝.  

• Example: In OpenAI Gym Pendulum-v0 environment, observation data are 
available in the form (cos 𝑞 , sin 𝑞 , �̇�) 

Question: Can we bridge this gap?
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Symplectic ODENet with embedded coordinate and momentum Data

q Define 𝑥#, 𝑥%, 𝑥& = sin 𝑞 , cos 𝑞 , �̇�

q Use chain-rule and Hamiltonian dynamics to express the dynamics of 𝑥#, 𝑥%, 𝑥&
�̇�# = −sin𝒒 ∘ �̇� = −𝒙% ∘ �̇�
�̇�% = cos 𝒒 ∘ �̇� = 𝒙# ∘ �̇�

�̇�& =
𝑑
𝑑𝑡

𝑴"#(𝒙#, 𝒙%)𝒑 =
𝑑
𝑑𝑡
𝑴"# 𝒙#, 𝒙% ⋅ 𝒑 +𝑴"# 𝒙#, 𝒙% ⋅ �̇�

𝒑 = 𝑴 𝒙', 𝒙* ⋅ 𝒙+

�̇� =
𝜕𝐻(𝒙', 𝒙*, 𝒑)
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where,
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Angle-aware design leads to performance improvement
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Ø Learned functions

Ø Prediction

Gray: Ground Truth
Orange: Prediction

Baseline
No energy conservation

Model-variant
Unstructured Hamiltonian

Symplectic ODENet
Structured Hamiltonian

* Zhong, BD, Chakraborty | Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control | ICLR 2020.
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Key takeaways

q Symplectic ODENet achieves better generalization with fewer training samples by encoding Hamiltonian 
dynamics into the neural network architecture.

q The angle-aware design narrows the gap between model-based and data-driven methods.

q Integration over longer time-horizon lowers prediction error, at the cost of increased training time.

q A parallel line of work has investigated similar questions using Lagrangian dynamics!
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The notion of angle-aware design can be extended to accommodate holonomic 
constraints in the configuration space

q Constrained Dynamics: 

 @
𝛷 𝑥 = 0	 ⇒ 	 (𝐷(𝛷)�̇� = 0
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𝑝(% 	𝑀&'	𝑝( + 𝑉(𝑥) 	 ⇒ 	 �̇� = 𝑀&'𝑝(
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Configuration Space with Constraints:
• System configuration is described by Cartesian 

coordinates 𝑥 ∈ ℝ/.
• Number of degrees of freedom is 𝑚.
• There exists 𝑘 = 𝑑 −𝑚 equality constraints: 

 𝛷% 𝑥 = 0,   𝑖 = 1,⋯ , 𝑘   ⇒   𝛷 𝑥 = 0

(𝜃", 𝜃#) è Independent coordinate, but often 
results in coordinate dependent mass matrix.

(𝑥", 𝑥#, 𝑥$ ,𝑥%) è Coordinates are constrained, 
but admits simplified mass matrix.

(𝑥!,𝑥")

(𝑥#, 𝑥$)𝜃# 

𝜃$ 

* Finzi, Wang, Wilson | Simplifying Hamiltonian and Lagrangian neural networks via explicit constraints | NeurIPS 2020.
* Zhong, BD, Chakraborty | Benchmarking Energy-Conserving Neural Networks for Learning Dynamics from Data | L4DC 2021.
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Explicit constraints lead to significant improvement in performance

q Models that enforce explicit 
constraints can generate predictions 
that are significantly better than 
those from models with implicit 
constraints.

q On the other hand, models that enforce 
implicit constraints are easier to 
implement.
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* Zhong, BD, Chakraborty | Benchmarking Energy-Conserving Neural Networks for Learning Dynamics from Data | L4DC 2020.
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Symplectic ODENet can also be extended to accommodate energy dissipation
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With DissipationWithout Dissipation

q 𝐷 𝑞 : Positive semi-definite dissipation 
matrix parametrized via a Fully-connected 
Feedforward Network

Learned functions

Pend
ulum

Learned Vector Field* Zhong, BD, Chakraborty | Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning | DeepDiffEq Workshop, ICLR 2020.
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Can we extend these models to accommodate contacts and collisions?

q We utilize maximum dissipation 
principle to solve post-contact 
velocities 

q We formulate the problem as a 
two-phase convex optimization 
problem

- Compression Phase
- Restitution Phase

q This formulation allows us to use 
differentiable optimization[❡]

* Zhong, BD, Chakraborty | Extending Lagrangian and Hamiltonian neural networks with differentiable contact model | NeurIPS 2021.
[❡] Agrawal et. al. | Differentiable Convex Optimization Layers | NeurIPS 2019.
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ODESolve(•)

ODESolve(•)ContactModelODESolve(•)ContactModelODESolve(•)

Loss Function: 𝐿#-norm of the difference Update ODESolve(•)and 
ContactModel

Initial position and 
Velocity
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Dynamics and Parameter Learning
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parameters

Using learned 
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Results
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q Goal: Hit the target (black) after one bounce 
off the ground

q Variable: Initial velocity (both linear and 
angular)

Find the initial position 
and velocity of the white 
ball so that the blue ball 
hits  the black target at 
the 1024th time step
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ü Physics-informed ML exploits the underlying laws of physics to define 
an appropriate Inductive Bias (e.g., ML architecture, Loss function) for 
the learning framework

ü This improves the model transparency, learning speed, data 
efficiency, and generalization performance

Key Take-away

Y. D. Zhong A. Chakraborty

The work discussed in 
this presentation has 
been done in 
collaboration with: 

biswa-dey@ieee.org

https://d-biswa.github.io/

@DBiswadip
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