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PNNL is one of DOE’s most diversified 
national laboratories
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$1.34B
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PNNL is advancing

scientific frontiers

and providing

solutions to critical 

national needs
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modal AI for 
modeling and 
simulation

• Lead in  physics 
informed 
operational AI for 
DOE missions

• Expand AI for 
scientific 
discovery

In
fr

a
s
tr

u
c
tu

re

W
o

rk
fo

rc
e

4

Sponsored AI Research at PNNL

• Working with DOE SC to develop new AI 
methods and computation paradigms for 
scientific discovery

• Working  with ARPA-E, AITO, and DOE applied 
energy offices in engaging AI capabilities to 
support their mission objectives in:

▪ Energy Efficiency (including buildings)

▪ Renewables (including wind)

▪ Power grid

▪ Manufacturing

▪ Transportation

• Developing and Managing Data Repositories
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Overarching Research Challenges

• Learning from limited and uncertain multi-modal data

▪ Generation of high-quality and high-coverage data is costly 
and often unfeasible.

• Integrating data with physics models

▪ Convergence of physical, computational and data sciences 
requires foundational advances in AI/ML and computing.

• Advancing computing systems to support 
heterogeneous workloads

▪ Novel computing frameworks and heterogenous system-on-a-
chip designs for converged applications require co-design.

• Developing AI based operational tools

▪ Utilize AI in combination with control approaches to 
develop systems that adapt in real-time to system 
abnormalities, recover from severe disruptions, and are 
responsive to human
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Classic Control Toolbox

• Uncertainty Management - Robust Control
▪ Advantage: Optimal performance for systems with 

parametric and dynamic uncertainty

▪ Challenge: Conservative Solution, Sometimes 
hard to implement

• Constraint Management - Model Predictive 
Control

▪ Advantage: Optimal performance; automatic 
constraint prioritization

▪ Challenge: Sensitive to modeling error, 
Convergence in real-time; Distributed solution 
hard

• Complexity/Scale Management - Agent 
Based Control

▪ Advantage: Low computation and communication 
requirements, easy to implement

▪ Challenge: Hard to guarantee performance
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Neural Networks in Control

1996 – rigorous explanations of 

reinforcement learning through the 

lens of dynamic programming and 

practical use of function 

approximation 

1999 – rigorous development of 

training dynamics and practical 

use of function approximation with 

performance guarantees during 

learning



Landscape of Optimization Methods 

Online optimization Parametric programming Supervised Learning

• “online” solution for given 

parameter values

• computationally demanding 

in real-time

• “offline” optimization 

obtains a solution map 

• classical methods lead to 

exponential complexity!

• “offline” optimization

obtains a model (map)

• scalable but requires 

expert optimizer to imitate

Reinforcement Learning

• “offline” optimization

obtains a policy map

• classically can’t handle 

constraints

Classic Control Toolbox Neural Networks in Control



Landscape of Optimization Tools 

Online optimization Parametric programming Supervised Learning Reinforcement Learning

Multi-parametric Toolbox (MPT)

Classic Control Toolbox Neural Networks in Control



Landscape of Optimization Tools 

Online optimization Parametric programming Supervised Learning Reinforcement Learning

W              ? …                                : a unifying approach for data-

driven optimization with solutions based on automatic differentiation (AD)

Multi-parametric Toolbox (MPT)
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Differentiable Programming Enables a Wide 
Array of Applications

• Differentiable Programming

▪ M. Innes, et al., A Differentiable Programming System to Bridge Machine Learning and Scientific Computing, 
2019

• Physics-informed Neural Networks 

▪ M. Raissi, et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse 
problems involving nonlinear partial differential equations, 2019

• Neural Differential Equations

▪ R. T. Q. Chen, et al., Neural Ordinary Differential Equations, 2019

▪ C. Rackauckas , et al., Universal Differential Equations for Scientific Machine Learning, 2021

• Differentiable Optimization

▪ A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019

▪ P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021

▪ S. Gould, et al., Deep Declarative Networks: A New Hope, 2020

▪ J. Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, 2021

• Differentiable Control

▪ B. Amos, et al., Differentiable MPC for End-to-end Planning and Control, 2019

▪ S. East, et al., Infinite-Horizon Differentiable Model Predictive Control, 2020
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Differentiable Programming Enables New 
Control Paradigms

• ML Based System & Control Co-Design

Systems are becoming more complex with 
significant intersystem couplings that are less 
understood 

▪ Enable design and operation of systems for 
multiple objectives 

▪ Address need to incorporate and evaluate 
control options early in the project design 
cycle 

• Simulation-based modeling and control

Simulations are crucial for decision-making

▪ Improve computational efficiency and 
scalability for heterogenous scientific 
simulations

▪ Use data to optimized explicit predictive 
control policy
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Invited Speakers

Boris Ivanovic 
(NVIDIA)

Mario Zanon
(IMT Lucca)

Bingqing Chen
(Bosh AI)

Chris Rackauckas

(MIT)
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Workshop Organizers

Draguna Vrabie
Aaron Tuor Soumya VasishtWenceslao Shaw CortezBiswadip DeyJan Drgona
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Workshop Schedule

08:30 am - 09:00 am - Sonja Glavaski-Radovanovic (PNNL): Opening remarks and overview 
of differentiable programming

9:00 am - 9:30 am - Boris Ivanovic (NVIDIA): Differentiable robotics

9:30 am - 10:00 am - Biswadip Dey (Siemens): Learning Hamiltonian dynamics with control

10:00 am - 10:30 am - Coffee break

10:30 am - 11:00 am - Mario Zanon (IMT Lucca): Differentiating MPC with applications in 
Reinforcement Learning

11:00 am - 11:30 am - Bingqing Chen (Bosch Center for AI): Towards safe and sample-efficient 
autonomous energy systems via differentiable programming

11:30 pm - 1:00 pm - Lunch Break

1:00 pm - 2:00 pm - Chris Rackauckas (MIT): Code tutorial 1: Julia

2:00 pm - 3:00 pm - Aaron Tuor (PNNL): Code tutorial 2: PyTorch

3:00 pm - 3:30 pm - Coffee break

3:30 pm - 5:00 pm - Jan Drgona (PNNL): Code tutorial 3: PyTorch



Thank you
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