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Energy-efficiency

Renewable energy integration

It is important to combat climate change by 1) reducing energy 
consumption, and 2) increasing renewable energy penetration.

Demand Side Supply Side

Climate Change Mitigation
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We present two works that applies differentiable programming 
to reinforcement learning (RL) control of energy systems. 

Demand Side Supply Side

Gnu-RL PROF

–     Gnu-RL

–     PROF

 

Energy-efficiency

Renewable energy integration
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While there is growing interest in applying RL to energy systems, 
real-world applications are numbered due to the facts that:

RL agents generally take a long time to learn and reach 
acceptable performance.

The actions from an RL agent may not satisfy the safety 
constraints imposed by underlying physical system.
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While there is growing interest in applying RL to energy systems, 
real-world applications are numbered due to the facts that:

Differentiable programming can tackle these challenges by 
incorporating domain knowledge on system dynamics and 
constraints. 

Vision: Autonomous energy systems can learn safely and 
sample-efficiently.  
☑ Safe
☑ Sample-efficient
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Gnu-RL: A Precocial Reinforcement Learning Solution for 
Building HVAC Control Using a Differentiable MPC Policy
 Bingqing Chen, Zicheng Cai, Mario Bergés 
Best Paper Award at ACM BuildSys’19

Bingqing Chen, Zicheng Cai, and Mario Bergés. "Gnu-RL: A practical and scalable reinforcement learning 
solution for building HVAC control using a differentiable MPC policy." Frontiers in Built Environment (2020): 174.

Energy-efficiency 
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Background: Buildings present significant energy saving 
potentials.

Demand Side
60%

30%

40%

Breakdown of Energy Consumption

Others Buildings Energy Saving Potentials
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Training Time in Literature for RL Control of HVAC Systems

✕ Liu & Henze

✕ Dalamagkidis et al.

✕ Yang et al.

◇ Costanzo et al.

◇ Peng & Morrison

✕ Li et al.
✕ Wang et al.

✤ Zhang & Lam
◇ Nagy et al.

✕ Jia et al.
✕ Gao et al.

(◇ Evaluated on Grey-box Model)
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Training Time in Literature for RL Control of HVAC Systems
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Training RL agents generally 
takes no less than a year.   
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Training Time in Literature for RL Control of HVAC Systems

✕ Liu & Henze

✕ Dalamagkidis et al. ✕ Yang et al.

✕ Li et al.

✕ Wang et al.

✤ Zhang & Lam

✕ Jia et al.
✕ Gao et al.
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our simula7on study;
47.5 years to reach 
comparable 
performance to the 
exis7ng controller
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Training Time in Literature for RL Control of HVAC Systems

✕ Liu & Henze

✕ Dalamagkidis et al. ✕ Yang et al.

✕ Li et al.
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✤ Zhang & Lam
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Gnu-RL 
Agent

✭ Chen et al. 
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Gnu-RL: a precocial reinforcement learning solution for HVAC 
control
[Precocial:= capable of a high degree of independent activity from birth]

(From Adobe Stock)
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1: Modeling

Typical Framework

2: Training 3: Real-world Deployment 

Real-World Environment
RL Agent

Simulation Environment

Action Action

(Modified from Zhang & Lam, 2018)

State
Reward

State
Reward
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1: Modeling

Typical Framework

2: Training 3: Real-world Deployment 

Real-World Environment
RL Agent

Simulation Environment

Action Action

(Modified from Zhang & Lam, 2018)

State
Reward

State
Reward
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1: Offline Pretraining

Our Framework

2: Online Learning

Real-World Environment

Gnu-RL 
Agent

Historical Data

Action

State
Reward

State
Action
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1: Offline Pretraining

We expedite the training by imitating the existing controller.

2: Online Learning

Real-World EnvironmentHistorical Data

Action

State
Reward

State
Action Gnu-RL 

Agent
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1: Offline 
Pretraining

We expedite the training by using a policy that encodes 
knowledge on system dynamics and control.

2: Online Learning

Real-World EnvironmentHistorical Data

State
Action

Gnu-RL 
Agent

Differen4able MPC Policy
（Amos et al., 2018）

Optimizer

Model State, Reward

Action
Objective

Constraints

Predicted 
States

Future Disturbances
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Background: Neural Networks and Differentiable Learning

Neural network = composition of non-linear, parameterized, differentiable functions

ℎ! = ℎ",!! ∘ ⋯ ∘ ℎ$,!"
Recent interest in enriching the set of functions that can be accommodated (“implicit layers”), 
such as optimization problems and physical equations. 

…
𝑥 "𝑦

Loss ℓ(𝑦, %𝑦)

Backprop

𝜃

ℎ",!! ℎ$,!"

Im
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it 
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We optimize the differentiable MPC policy end-to-end with a 
policy gradient algorithm. 

RL 
Agen

t
Policy, 𝜋!

State, 𝑋" = 𝑥" Action, 𝑈" = 𝑢"

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). 
Proximal Policy Op8miza8on algorithms. arXiv preprint arXiv:1707.06347.
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We optimize the differentiable MPC policy end-to-end with a 
policy gradient algorithm. 

RL 
Agen

t
Policy, 𝜋!

State, 𝑋" = 𝑥" Action, 𝑈" = 𝑢"

𝜃 are the weights of 
the neural network. 

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). 
Proximal Policy Optimization algorithms. arXiv preprint arXiv:1707.06347.
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We optimize the differentiable MPC policy end-to-end with a 
policy gradient algorithm. 

RL 
Agen

t
Policy, 𝜋!

State, 𝑋" = 𝑥" Action, 𝑈" = 𝑢"

The policy gradient 
optimizes the 
expected reward.

Policy Gradient, ∇!𝔼#,%∼'%𝑅(𝑠, 𝑎)

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). 
Proximal Policy Optimization algorithms. arXiv preprint arXiv:1707.06347.
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We optimize the differentiable MPC policy end-to-end with a 
policy gradient algorithm. 

RL 
Agen

t
Policy, 𝜋!

State, 𝑋" = 𝑥" Action, 𝑈" = 𝑢"

Update 𝜃 with 
backpropagation.

Policy Gradient, ∇!𝔼#,%∼'%𝑅(𝑠, 𝑎)

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). 
Proximal Policy Optimization algorithms. arXiv preprint arXiv:1707.06347.
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We optimize the differentiable MPC policy end-to-end with a 
policy gradient algorithm. 

Gnu-RL Agent
Differentiable MPC Policy, 𝜋	"

Action, 𝑈# = 𝑢#

Policy Gradient, 
∇"𝔼$!𝑅

Optimizer

Model
𝑥#%& = 𝐴𝑥# + 𝐵'𝑢 + 𝐵(𝑑
𝜙 = {𝐴, 𝐵', 𝐵(}

Objective
Constraints

State, 𝑋" = 𝑥"
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We optimize the differentiable MPC policy end-to-end with a 
policy gradient algorithm. 

Gnu-RL Agent
Differentiable MPC Policy, 𝜋	"

Action, 𝑈# = 𝑢#

Policy Gradient, 
∇"𝔼$!𝑅

Optimizer

Model
𝑥#%& = 𝐴𝑥# + 𝐵'𝑢 + 𝐵(𝑑
𝜙 = {𝐴, 𝐵', 𝐵(}

Objective
Constraints

In the forward pass, the 
Differentiable MPC policy solves 
a standard MPC problem. 

State, 𝑋" = 𝑥"
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We optimize the differentiable MPC policy end-to-end with a 
policy gradient algorithm. 

Gnu-RL Agent
Differentiable MPC Policy, 𝜋	"

Action, 𝑈# = 𝑢#

Policy Gradient, 
∇"𝔼$!𝑅

Optimizer

Model
𝑥#%& = 𝐴𝑥# + 𝐵'𝑢 + 𝐵(𝑑
𝜙 = {𝐴, 𝐵', 𝐵(}

Objective
Constraints

The policy encodes a model 
of system dynamics.

State, 𝑋" = 𝑥"
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We optimize the differentiable MPC policy end-to-end with a 
policy gradient algorithm. 

Gnu-RL Agent
Differentiable MPC Policy, 𝜋	"

Action, 𝑈# = 𝑢#

Policy Gradient, 
∇"𝔼$!𝑅

Optimizer

Model
𝑥#%& = 𝐴𝑥# + 𝐵'𝑢 + 𝐵(𝑑
𝜙 = {𝐴, 𝐵', 𝐵(}

Objective
Constraints

𝜙 are the parameters 
of the model. 

State, 𝑋" = 𝑥"
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We optimize the differentiable MPC policy end-to-end with a 
policy gradient algorithm. 

Gnu-RL Agent
Differentiable MPC Policy, 𝜋	"

Action, 𝑈# = 𝑢#

Policy Gradient, 
∇"𝔼$!𝑅

Optimizer

Model
𝑥#%& = 𝐴𝑥# + 𝐵'𝑢 + 𝐵(𝑑
𝜙 = {𝐴, 𝐵', 𝐵(}

Objective
Constraints

In the backward pass, 𝜙 is updated with 
the same policy gradient algorithm.

State, 𝑋" = 𝑥"
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Experiment 1: Simulation Study on Commercial Reference Buildings

Deru, M., Field, K., Studer, D., Benne, K., Griffith, B., Torcellini, P., ... & Crawley, D. (2011). US Department 
of Energy commercial reference building models of the national building stock.

We compared our proposed approach to: 
• Optimal solution
• PI-Controller
• An RL agent with LSTM policy 
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(1 Epoch = 1 Year)
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Experiment 2: Simulation Study on Intelligent Workplace

Intelligent Workplace
Margaret Morrison Hall, 4th Floor

(✤ Zhang & Lam, 2018)
HVAC Schematic
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Gnu-RL achieved significant energy savings without 
compromising thermal comfort. 

Total Heating 
Demand 

Predicted Percentage Dissatisfied
Mean STD

(kWh) (%) (%)
Existing Controller 43709 9.45 5.59

Agent #6 
(✤ Zhang & Lam, 2018) 37131 11.71 3.76

Gnu-RL 34678 9.56 6.39

Gnu-RL achieved 20.6% energy savings compared to the 
existing controller and 6.6% energy savings compared to the best 
published RL result in the same environment.



33

Experiment 3: Real-world Deployment

Gates 64046404, Gates & Hillman Center HVAC Schematic



34

Gnu-RL can be directly deployed in real-world environment 
with no prior information other than historical data.

q Specifically, we only used a month of historical data 
for pretraining.

q In the three-week experiment, the Gnu-RL agent 
continuously improved its policy. 

q By the end of experiment, the Gnu-RL agent could 
track the temperature setpoint well, despite the 
complex room usage pattern. 
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Results: Summary Statistics

Cooling 
Demand 

Zone Temp.
RMSE

(kWh) (oF)

Existing 
Controller

Jun. 2017 169.4 2.4
Jun. 2018 130.7 2.7

Normalized 99.4 /
Gnu-RL 82.8 1.02

Gnu-RL achieved 16.7% energy savings compared to the 
existing controller, while maintaining zone temperature better.
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Summary

Gnu-RL is a practical and scalable RL solution for building control. 

Leverage the differentiable MPC policy, Gnu-RL is significantly 
more sample-efficient than prior works.  

Gnu-RL can be directly deployed in real-world environment 
with no prior information other than historical data.
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Enforcing Policy Feasibility Constraints through Differentiable 
Projection for Energy Optimization
Bingqing Chen*, Priya L. Donti*, Kyri Baker, J. Zico Kolter, and Mario Bergés 
Best Paper Runner-up at ACM e-energy’21

Network Constraints
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Motivation: Autonomous energy systems should be safe.

Application 1: An autonomous agent that learning to control buildings energy-efficiently, while 
ensuring the occupants’ thermal comfort requirements are satisfied.  

Application 2: An autonomous agent that learning to operate variable renewable energy 
resources, without violating constraints in the distribution network.

subject to

subject to
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Experiment 2: Inverter Control

subject to
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As the penetration of renewable energy resources continues to grow, 
the grid of the future will become inverter-dominated.

Inverter

Kroposki, B., Johnson, B., Zhang, Y., Gevorgian, V., Denholm, P., Hodge, B. M., & Hannegan, B. (2017). Achieving a 100% renewable grid: 
Operating electric power systems with extremely high levels of variable renewable energy. IEEE Power and Energy Magazine, 15(2), 61-73.



41

Background: Increasing penetration of  renewable generation 
can introduce unintended challenges for grid operators.

The intermittent and variable nature of 
renewable generation makes it difficult to 
balance supply and demand of energy in 
the power grid.

High penetration of renewable generation 
without proper control results in constraint 
violations in the distribution network.

Demand Side

Supply Side
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Over-voltage has become a common occurrence in areas with 
high renewable penetration. 

Volt-Var control is recommended in IEEE 1547.8-2018.

Volt-Var Control Curve
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1

Differentiable Projection,
!! = #"! ∘ %!!

Neural Network, %!!

Policy, !& Environment

' ∼ !!

Policy Gradient,
−*!+(&)

Forward Pass Backpropagation

Forward Pass

.#

* !"" * "" ★ #⋆

Backpropagation

**
*

.# ★

$%!('!, )!, *!)

!(##, %#,&#)

PROF: Projected Feasibility
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Consider the projection operation

𝒫𝒞 "𝑢 = 	 argmin
'	∈	𝒞

1
2
	||𝑢	 − "𝑢	||**

For linear constraints 𝒞 = {𝑢 ∶ 𝐴𝑢 = 𝑏, 𝐺𝑢 ≤ ℎ}, can write and differentiate through KKT conditions

Note: Can also differentiate through general convex projections

Differentiable Projection Layer

See also: 
• Amos, B., Kolter, J.Z. (2017). OptNet: Differentiable Optimization as a Layer in Neural Networks. ICML.
• Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J.Z. (2019). Differentiable convex optimization layers. NeurIPS.

d𝑢⋆ 	− d"𝑢 	+ d𝐴,𝜈⋆ + 𝐴,d𝜈⋆ + d𝐺,𝜆⋆ + 𝐺,d𝜆⋆ = 	0
d𝐴𝑢⋆ +	𝐴d𝑢⋆ −d𝑏 = 	0

diag 𝐺𝑢⋆ − ℎ d𝜆 + 	diag(𝜆⋆)(d𝐺𝑢⋆ + 	𝐺d𝑢⋆ 	− dℎ) 	= 	0

diag 𝜆⋆ 𝐺𝑢⋆ 	− 	ℎ = 	0
𝐴𝑢⋆ 	− 	𝑏 = 	0

𝑢⋆ 	− 	 "𝑢 	+ 𝐴,𝜈⋆ + 𝐺,𝜆⋆ = 	0
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“Post-hoc” projections enforce constraints, but in a way that is hidden 
from the neural network during learning. 
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Backpropagating through the differentiable projection layer makes 
the neural network cognizant of the constraints in its learning.
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Simulation Testbed: IEEE 37-bus Feeder System
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PV Panels

Baker, K., Bernstein, A., Dall’Anese, E., & Zhao, C. (2017). Network-cognizant voltage droop 
control for distribution grids. IEEE Transactions on Power Systems, 33(2), 2098-2108.
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Problem Formulation

Control the active and reactive power at each inverter 𝒑𝒊, 𝒒𝒊 in order to
Minimize Curtailment

Subject to system-level and device-level constraints

Given a linearized model of the distribution network

Bolognani, S., & Dörfler, F. (2015, September). Fast power system analysis via implicit linearization of the 
power flow manifold. In 2015 53rd Annual Allerton Conference on Communication, Control, and Computing 

(Allerton) (pp. 402-409). IEEE.
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PROF satisfies voltage constraints throughout the experiment and learns to 
minimize curtailment as well as possible within its conservative safety set.
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Due to the conservativeness of its safe set, PROF curtails more energy than the 
optimal solution, which is expensive to compute. 
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Summary

PROF is a method that enforces convex operational constraints 
within neural policies with a differentiable projection layer. 

The result is a powerful neural policy that can flexibly optimize 
performance on the true dynamics, while satisfying constraints.

In the inverter control setting, PROF satisfies the constraints 
100% of the time over more than half a million time steps.
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Outlook: Differentiable programming can find other applications in 
the design and operation of energy systems. 

Demand Side

Supply Side

Electrolysis

Nuclear Fusion

Fuel Cell

。。。


