
Differentiating MPC with applications in Reinforcement Learning

Mario Zanon

IMT School for Advanced Studies Lucca

Joint work with Sébastien Gros
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MPC

Iteratively solve:

u⋆(s,θ), x⋆(s,θ) = argmin
u,x

V f
θ(xN)+

N−1∑
k=0

ℓθ(xk , uk )

s.t. x0 = s,

xk+1 = fθ (xk , uk ) ,

hθ (xk , uk ) ≤ 0,

hfθ (xN) ≤ 0,

Optimal policy: πθ(s) := u⋆
0 (s,θ) deterministic

Remarks:

Typically
▶ fθ “exact” or from system identification
▶ ℓθ , hθ given
▶ hfθ invariant set, V f

θ Lyapunov function

If fθ exact and N → ∞: asymptotic stability + optimal closed-loop performance

In practice: model inaccuracy =⇒ some form of practical stability and suboptimal

Let RL adapt θ to recover optimality
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Reinforcement Learning

A technique to solve a stochastic optimal control problem
▶ Many similarities with Dynamic Programming
▶ Based on sampling
▶ Model based / model free

Cross-disciplinary approach
▶ Computer Science
▶ Optimal Control
▶ Systems / Control Theory
▶ Statistics

Important success stories
▶ Aerobatic helicopter flight
▶ Win against Chess, Shogi and Go masters
▶ Learn to beat the best Chess algorithm in a matter of few hours

Limitations
▶ Theoretical foundation of some algorithms not fully developed
▶ No stability and safety guarantees

Advantages
▶ Optimality for the true system
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RL in a Nutshell

Markov Chain defined by

P[ s+ | s, a ] equivalent of s+ = f(s, a,w)

probability (density) of transitioning from state s to state s+ when taking action a

Stochastic policy (includes deterministic as special case)

π [ a | s ] ∈ R+ deterministic: a = π(s)

assigns the probability (density) of taking action a for a given state s
Expected discounted cost (return):

J (π) = Eπ

[
∞∑
k=0

γkL (sk , ak)

]
where ak is drawn from policy π. Initial conditions s0 can be fixed or random.
Discount factor γ ∈ [0, 1]
Markov Decision Process (MDP): find π⋆ solution of

π⋆ := argmin
π

J (π)

Optimal parametrized policy πθ given by:

θ⋆ := argmin
θ

J (πθ)

RL (approximately) solves the MDP in a sample-based fashion.
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Value functions

Value function:

Vπ (s) = Eπ

[
∞∑
k=0

γkL (sk , ak)

∣∣∣∣∣ s0 = s, ak ∼ π[. | sk ]

]
gives the expected cost for policy π, starting from given initial conditions s

Note that: J (π) = Eρs [Vπ (s)], for some initial probability (density) ρs

Action-Value function:

Qπ (s, a) = Eπ

[
∞∑
k=0

γkL (sk , ak)

∣∣∣∣∣ s0 = s, a0 = a, ak>0 ∼ π[. | sk ]

]
gives the expected cost for policy π, starting from given initial condition s, and using
action a as first input (policy π after that)

Optimal Value functions
▶ Notation:

V⋆ (s) = Vπ⋆ (s) Q⋆ (s, a) = Qπ⋆ (s, a)

▶ Properties:

V⋆ (s) = min
a

Q⋆ (s, a) π⋆ (s) = argmin
a

Q⋆ (s, a)
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Reinforcement Learning - Algorithms

Form function approximators:

Qθ (s, a) , Vθ (s) , πθ (s)

via ad-hoc parametrization

Q-learning methods adjust θ to get

min
θ

E
[
(Q⋆ (s, a)− Qθ (s, a))

2
]

Yields policy:

πθ (s) = amin
a

Qθ (s, a) ≈ amin
a

Q⋆ (s, a) = π⋆ (s)

Policy gradient methods adjust θ to get

max
θ

J(πθ) ⇔ ∇θ J(πθ) = 0

yields policy πθ (s) ≈ π⋆ (s) directly

All approaches hinge on building either
Qθ or {πθ,Vθ}

Most approaches are derivative-based:
we need ∇θπθ,∇θVθ,∇θQθ

Nowadays RL typically relies on DNNs as function approximators:

difficult to understand, no strong guarantees

Alternative: use MPC as function approximator

this provides explainability and makes it possible to guarantee safety and stability
we need to differentiate MPC!
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MPC as a Function Approximator

MPC Tuning parameter θ, initial state s

, fixed policy a

min
x,u

N−1∑
k=0

ℓθ(x, u) + V f
θ(xN)

s.t. x0 = s

xk+1 = fθ(xk , uk)

hθ(xk , uk) ≤ 0

hf
θ(xN) ≤ 0

MPC delivers a parametric deterministic policy πθ

MPC delivers a parametric value function Vπθ
θ

MPC delivers a parametric action value function Qπθ
θ

▶ In practice be careful with u0 = a: LICQ issues

All these functions can be differentiated wrt θ
▶ derivatives necessary in RL algorithms
▶ need LICQ + few other conditions: mild requirements
▶ if we can solve MPC we can differentiate it

MPC has all the properties required from a function approximator

We can let RL learn the best θ

We can let MPC enforce stability and safety guarantees in RL
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MPC is a parametric NLP

MPC:

min
x,u

N−1∑
k=0

ℓθ(xk , uk) + V f
θ(xN)

s.t. x0 = s

xk+1 = fθ(xk , uk)

hθ(xk , uk) ≤ 0

hf
θ(xN) ≤ 0

Parametric NLP:

x̄⋆(p̄) := argmin
x̄

f̄ (x̄, p̄)

s.t. ḡ(x̄, p̄) = 0

h̄(x̄, p̄) ≤ 0

where

x̄ = (x, u)

p̄ = θ

Two questions require a solid answer:

How do we solve NLPs?

How do we differentiate NLPs?
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How Do We Solve Parametric NLPs?

NLP

min
x̄

f̄ (x̄, p̄)

s.t. ḡ(x̄, p̄) = 0

h̄(x̄, p̄) ≤ 0

Quadratic approximation

min
∆x̄

∆x̄⊤M∆x̄+ m⊤∆x̄

s.t. G∆x̄+ ḡ = 0

H∆x̄+ h̄ ≤ 0

Iterative procedure:

Given x̄

Compute quadratic approximation

Enforce M ≻ 0

Solve QP / linear system

Ensure progress by computing α

Take a step x̄ = x̄+ α∆x̄

Primal-dual solution

z̄⋆(p̄) :=
(
x̄⋆(p̄), λ̄

⋆
(p̄), µ̄⋆(p̄)

)
satisfies the KKT conditions

r(z̄, p̄) :=

 ∇x̄L(x̄, λ̄, µ̄, p̄)
ḡ(x̄, p̄)
h̄A(x̄, p̄)

 = 0

µ̄⋆
Ac(p̄) = 0

with active set A and

L(x̄, λ̄, µ̄, p̄) := f̄ (x̄, p̄) + λ̄
⊤
ḡ(x̄, p̄) + µ̄⊤h̄(x̄, p̄)
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Parametric NLP Sensitivities

Parametric NLP:

x̄⋆(p̄) := argmin
x̄

f̄ (x̄, p̄)

s.t. ḡ(x̄, p̄) = 0

KKT Conditions

r(z̄, p̄) :=

[
∇x̄L(x̄, λ̄, p̄)

ḡ(x̄, p̄)

]
= 0

How to Compute the Derivative

∇z̄r (z̄
⋆(p̄), p̄)

⊤ dz̄⋆(p̄)

dp̄
= − ∂

∂p̄
r (z̄⋆(p̄), p̄)

Observe that

∇z̄r (z̄
⋆(p̄), p̄)

⊤
=

[
∇2

x̄x̄Lp̄ ∇x̄ḡp̄
∇x̄ḡ

⊤
p̄ 0

]
Then[

∇2
x̄x̄Lp̄ ∇x̄ḡp̄

∇x̄ḡ
⊤
p̄ 0

]
dz̄⋆(p̄)

dp̄
= − ∂

∂p̄

[
∇x̄Lp̄

ḡp̄

]
Compare with the (last) Newton step![

∇2
x̄x̄Lp̄ ∇x̄ḡp̄

∇x̄ḡ
⊤
p̄ 0

] [
∆x̄
λ̄

]
= −

[
∇x̄Lp̄

ḡp̄

]

Is this enough?

Not all KKT points
are minima!

We need:

LICQ

SOSC

Then ∇z̄r invertible!

Shorthand:

Lp̄ := L(x̄⋆(p̄), λ̄⋆
(p̄), p̄)

ḡp̄ := ḡ(x̄⋆(p̄), p̄)
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⊤
p̄ 0

] [
∆x̄
λ̄

]
= −

[
∇x̄Lp̄
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ḡp̄ := ḡ(x̄⋆(p̄), p̄)

M. Zanon (IMT Lucca) MPC and RL 10 / 15



Parametric NLP Sensitivities

Parametric NLP:

x̄⋆(p̄) := argmin
x̄

f̄ (x̄, p̄)
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ḡp̄ := ḡ(x̄⋆(p̄), p̄)

M. Zanon (IMT Lucca) MPC and RL 10 / 15



Parametric NLP Sensitivities

Parametric NLP:

x̄⋆(p̄) := argmin
x̄

f̄ (x̄, p̄)
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∇x̄ḡ
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∇x̄ḡ
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ḡp̄

]

Is this enough?

Not all KKT points
are minima!

We need:

LICQ

SOSC

Then ∇z̄r invertible!

Shorthand:

Lp̄ := L(x̄⋆(p̄), λ̄⋆
(p̄), p̄)
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Sensitivities and Implicit Functions

Parametric NLP:

x̄⋆(p̄) := argmin
x̄

f̄ (x̄, p̄)

s.t. ḡ(x̄, p̄) = 0

f ⋆(p̄) = f̄ (x̄⋆(p̄), p̄)

Parametric Sensitivities:[
∇2

x̄x̄Lp̄ ∇x̄ḡp̄
∇x̄ḡ

⊤
p̄ 0

]
d

dp̄

[
x̄⋆(p̄)
λ̄⋆(p̄)

]
= − ∂

∂p̄

[
∇x̄Lp̄

ḡp̄

]

Important properties:

Sensitivities are (almost) for free: KKT
matrix already factorized!

Sensitivity of the optimal value:

df ⋆(p̄)

dp̄
=

∂Lp̄

∂p̄

What does this mean for MPC?

dVθ(s)
dθ

from df ⋆(p̄)
dp̄

dQθ(s,a)
dθ

from df ⋆(p̄)
dp̄

dπθ(s)
dθ

from dx̄⋆(p̄)
dp̄

Sensitivities are cheap and easy to
compute

What about inequality constraints?

Not a real issue in practice,
see parametric NLP theory
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⊤
p̄ 0

]
d

dp̄

[
x̄⋆(p̄)
λ̄⋆(p̄)

]
= − ∂

∂p̄

[
∇x̄Lp̄
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ḡp̄

]

Important properties:

Sensitivities are (almost) for free: KKT
matrix already factorized!

Sensitivity of the optimal value:

df ⋆(p̄)

dp̄
=

∂Lp̄

∂p̄

What does this mean for MPC?

dVθ(s)
dθ

from df ⋆(p̄)
dp̄

dQθ(s,a)
dθ

from df ⋆(p̄)
dp̄

dπθ(s)
dθ

from dx̄⋆(p̄)
dp̄

Sensitivities are cheap and easy to
compute

What about inequality constraints?

Not a real issue in practice,
see parametric NLP theory

M. Zanon (IMT Lucca) MPC and RL 11 / 15



Sensitivities and Implicit Functions

Parametric NLP:

x̄⋆(p̄) := argmin
x̄

f̄ (x̄, p̄)

s.t. ḡ(x̄, p̄) = 0

f ⋆(p̄) = f̄ (x̄⋆(p̄), p̄)

Parametric Sensitivities:[
∇2

x̄x̄Lp̄ ∇x̄ḡp̄
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⊤
p̄ 0

]
d

dp̄

[
x̄⋆(p̄)
λ̄⋆(p̄)

]
= − ∂

∂p̄

[
∇x̄Lp̄
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s.t. ḡ(x̄, p̄) = 0

f ⋆(p̄) = f̄ (x̄⋆(p̄), p̄)

Parametric Sensitivities:[
∇2

x̄x̄Lp̄ ∇x̄ḡp̄
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ḡp̄

]

Important properties:

Sensitivities are (almost) for free: KKT
matrix already factorized!

Sensitivity of the optimal value:

df ⋆(p̄)

dp̄
=

∂Lp̄

∂p̄

What does this mean for MPC?
dVθ(s)

dθ
from df ⋆(p̄)

dp̄

dQθ(s,a)
dθ

from df ⋆(p̄)
dp̄

dπθ(s)
dθ

from dx̄⋆(p̄)
dp̄

Sensitivities are cheap and easy to
compute

What about inequality constraints?

Not a real issue in practice,
see parametric NLP theory

M. Zanon (IMT Lucca) MPC and RL 11 / 15



Safe and Stabilizing RL Based on Linear Tube MPC

Tube-Based Robust MPC

Q̂θ(s, a) :=

min
z

N−1∑
k=0

∥∥∥∥xk − xr
uk − ur

∥∥∥∥2
H
+

∥∥xN − xr
∥∥2

P(θ)

+
∥∥x0∥∥2Λ + λ⊤x0 + l

s.t. x0 = s, u0 = a,

xk+1 = Axk + Buk + b, k ∈ IN−1
0 ,

Cxk + Duk + ck (θ) ≤ 0, k ∈ IN−1
0 ,

T (θ)xN + t(θ) ≤ 0,

Parameter vector: θ = {xr, ur,H,Λ,λ, l ,M}

Conditions to enforce on θ:

Steady state

xr = Axr + Bur

Positive definiteness

H =

[
Q S
S⊤ R

]
≻ 0

Consistent uncertainty set

M(si+1 − (Asi + Bai + b)) ≤ m

Terminal set includes the reference

T (θ)xr ≤ t(θ)

Moreover:

Riccati terminal cost and control law

K(θ) = (R + B⊤P(θ)B)−1(S⊤ + B⊤P(θ)A)

P(θ) = Q + A⊤P(θ)A − (S + A⊤P(θ)B)K(θ)

Constraint tightening; RPI terminal set

f(θ) = (ck (θ),T (θ), t(θ))

Derivative computation:

apply chain rule:

dψ(θ)

dθ
=
∂ψ(θ)

∂θ
+
∂ψ(θ)

∂f(θ)

df(θ)

dθ

can be cumbersome but it’s not
rocket science
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min
z

N−1∑
k=0

∥∥∥∥xk − xr
uk − ur

∥∥∥∥2
H
+

∥∥xN − xr
∥∥2

P(θ)

+
∥∥x0∥∥2Λ + λ⊤x0 + l

s.t. x0 = s, u0 = a,

xk+1 = Axk + Buk + b, k ∈ IN−1
0 ,

Cxk + Duk + ck (θ) ≤ 0, k ∈ IN−1
0 ,

T (θ)xN + t(θ) ≤ 0,

Double integrator

s+ =

[
1 0.1
0 1

]
s+

[
0.05
0.1

]
a+ w

s ∈ [−1, 1]2 a ∈ [−1, 1]

Unknown noise set W
RL parameter: θ = {xr, ur,H,Λ,λ, l ,M}
Reward

−R(s, a) = (p − 3)2 + 0.01v2 + 0.01a2

Initial guess
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RL parameter: θ = {xr, ur,H,Λ,λ, l ,M}
Reward

−R(s, a) = (p − 3)2 + 0.01v2 + 0.01a2

After learning
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Wrap-up

MPC can be differentiated and that is
▶ cheap
▶ useful

Differentiable MPC can be used as a function approximator within RL
▶ RL can tune MPC to get the best possible performance
▶ proxy to introduce safety and stability guarantees in RL
▶ I have a talk on that on WeB17.2: Reinforcement Learning with Guarantees (A

Tutorial on Policy Learning Methods for Advanced Controller Representations)

Differentiable MPC can also be exploited to build distributed algorithms, e.g.:

Joint work with R. Hult, S. Gros, P. Falcone

Parametric sensitivities are also helpful to tune tracink MPC to behave similarly to
economic MPC
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Our work on the topic

1. Stability-Constrained Markov Decision Processes Using MPC, M. Zanon, M. Palladino, S. Gros,
Automatica 2022

2. Safe Reinforcement Learning with Stability & Safety Guarantees Using Robust MPCLearning for
MPC with Stability & Safety Guarantees, S. Gros, M. Zanon, Automatica 2022

3. Bias Correction in Reinforcement Learning via the Deterministic Policy Gradient Method for
MPC-Based Policies, S. Gros, M. Zanon, ACC, 2021

4. Reinforcement Learning based on MPC and the Stochastic Policy Gradient Method, S. Gros, M.
Zanon, ACC, 2021

5. Safe Reinforcement Learning Using Robust MPC, M. Zanon, S. Gros, IEEE TAC, 2021

6. Safe Reinforcement Learning via Projection on a Safe Set: How to Achieve Optimality? S. Gros, M.
Zanon, A. Bemporad, IFAC World Congress 2020

7. Reinforcement Learning for Mixed-Integer Problems Based on MPC, S. Gros, M. Zanon, IFAC World
Congress 2020

8. Reinforcement Learning Based on Real-Time Iteration NMPC, M. Zanon, V. Kungurstev, S. Gros,
IFAC World Congress 2020

9. Data-driven Economic NMPC using Reinforcement Learning, S. Gros, M. Zanon, IEEE TAC, 2020

10. Practical Reinforcement Learning of Stabilizing Economic MPC, M. Zanon, S. Gros, A. Bemporad,
European Control Conference 2019
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