Differentiating MPC with applications in Reinforcement Learning

Mario Zanon

IMT School for Advanced Studies Lucca

Joint work with Sébastien Gros ACC 2023

Iteratively solve:

$$\begin{split} \mathbf{u}^{\star}(\mathbf{s},\boldsymbol{\theta}), \mathbf{x}^{\star}(\mathbf{s},\boldsymbol{\theta}) &= \arg\min_{\mathbf{u},\mathbf{x}} V_{\boldsymbol{\theta}}^{\mathbf{f}}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \ell_{\boldsymbol{\theta}}(\mathbf{x}_{k},\mathbf{u}_{k}) \\ \text{s.t. } \mathbf{x}_{0} &= \mathbf{s}, \\ \mathbf{x}_{k+1} &= \mathbf{f}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \\ \mathbf{h}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) &\leq 0, \\ \mathbf{h}_{\boldsymbol{\theta}}^{f}\left(\mathbf{x}_{N}\right) &\leq 0, \end{split}$$

Iteratively solve:
$$\begin{split} \mathbf{u}^{\star}(s,\theta), \mathbf{x}^{\star}(s,\theta) &= \mbox{ arg } \min_{\mathbf{u},\mathbf{x}} \ V^{f}_{\theta}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \ell_{\theta}(\mathbf{x}_{k},\mathbf{u}_{k}) \\ &\text{ s.t. } \mathbf{x}_{0} = s, \\ & \mathbf{x}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \\ & \mathbf{h}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq 0, \\ & \mathbf{h}^{f}_{\theta}\left(\mathbf{x}_{N}\right) \leq 0, \end{split}$$

Optimal policy: $\pi_{\theta}(s) := u_0^{\star}(s, \theta)$ deterministic

Iteratively solve:
$$\begin{split} \mathbf{u}^{\star}(s,\theta), \mathbf{x}^{\star}(s,\theta) &= \mbox{ arg } \min_{\mathbf{u},\mathbf{x}} \ V^{f}_{\theta}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \ell_{\theta}(\mathbf{x}_{k},\mathbf{u}_{k}) \\ &\text{ s.t. } \mathbf{x}_{0} = s, \\ & \mathbf{x}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \\ & \mathbf{h}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq 0, \\ & \mathbf{h}^{f}_{\theta}\left(\mathbf{x}_{N}\right) \leq 0, \end{split}$$

Optimal policy: $\pi_{\theta}(s) := u_0^{\star}(s, \theta)$ deterministic

Iteratively solve:

$$\begin{split} \mathbf{u}^{\star}(\mathbf{s},\boldsymbol{\theta}), \mathbf{x}^{\star}(\mathbf{s},\boldsymbol{\theta}) &= \arg\min_{\mathbf{u},\mathbf{x}} V_{\boldsymbol{\theta}}^{\mathbf{f}}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \ell_{\boldsymbol{\theta}}(\mathbf{x}_{k},\mathbf{u}_{k}) \\ \text{s.t. } \mathbf{x}_{0} &= \mathbf{s}, \\ \mathbf{x}_{k+1} &= \mathbf{f}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \\ \mathbf{h}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) &\leq 0, \\ \mathbf{h}_{\boldsymbol{\theta}}^{f}\left(\mathbf{x}_{N}\right) &\leq 0, \end{split}$$

Optimal policy: $\pi_{\theta}(s) := u_0^{\star}(s, \theta)$ deterministic

- Typically
 - f_{θ} "exact" or from system identification
 - ▶ ℓ_{θ} , \mathbf{h}_{θ} given
 - $\mathbf{h}_{\theta}^{\mathrm{f}}$ invariant set, V_{θ}^{f} Lyapunov function

Iteratively solve:

$$\begin{split} \mathbf{u}^{\star}(s,\boldsymbol{\theta}), \mathbf{x}^{\star}(s,\boldsymbol{\theta}) = & \arg\min_{\mathbf{u},\mathbf{x}} \ V_{\boldsymbol{\theta}}^{f}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \ell_{\boldsymbol{\theta}}(\mathbf{x}_{k},\mathbf{u}_{k}) \\ & \text{s.t. } \mathbf{x}_{0} = s, \\ & \mathbf{x}_{k+1} = \mathbf{f}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \\ & \mathbf{h}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq 0, \\ & \mathbf{h}_{\boldsymbol{\theta}}^{f}\left(\mathbf{x}_{N}\right) \leq 0, \end{split}$$

Optimal policy: $\pi_{\theta}(s) := u_0^{\star}(s, \theta)$ deterministic

- Typically
 - f_{θ} "exact" or from system identification
 - ▶ ℓ_{θ} , \mathbf{h}_{θ} given
 - $\mathbf{h}_{\theta}^{\mathrm{f}}$ invariant set, V_{θ}^{f} Lyapunov function
- If $\mathbf{f}_{\boldsymbol{\theta}}$ exact and $N \to \infty:$ asymptotic stability + optimal closed-loop performance

Iteratively solve:

$$\begin{split} \mathbf{u}^{\star}(s,\boldsymbol{\theta}), \mathbf{x}^{\star}(s,\boldsymbol{\theta}) = & \arg\min_{\mathbf{u},\mathbf{x}} \ V_{\boldsymbol{\theta}}^{f}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \ell_{\boldsymbol{\theta}}(\mathbf{x}_{k},\mathbf{u}_{k}) \\ & \text{s.t. } \mathbf{x}_{0} = s, \\ & \mathbf{x}_{k+1} = f_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \\ & \mathbf{h}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq 0, \\ & \mathbf{h}_{\boldsymbol{\theta}}^{f}\left(\mathbf{x}_{N}\right) \leq 0, \end{split}$$

Optimal policy: $\pi_{\theta}(s) := u_0^{\star}(s, \theta)$ deterministic

- Typically
 - f_{θ} "exact" or from system identification
 - ▶ ℓ_{θ} , \mathbf{h}_{θ} given
 - $\mathbf{h}_{\theta}^{\mathrm{f}}$ invariant set, V_{θ}^{f} Lyapunov function
- If $\mathbf{f}_{\boldsymbol{\theta}}$ exact and $N \to \infty:$ asymptotic stability + optimal closed-loop performance
- ullet In practice: model inaccuracy \implies some form of practical stability and suboptimal

Iteratively solve:

$$\begin{split} \mathbf{u}^{\star}(s,\boldsymbol{\theta}), \mathbf{x}^{\star}(s,\boldsymbol{\theta}) = & \arg\min_{\mathbf{u},\mathbf{x}} \ V_{\boldsymbol{\theta}}^{f}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \ell_{\boldsymbol{\theta}}(\mathbf{x}_{k},\mathbf{u}_{k}) \\ & \text{s.t. } \mathbf{x}_{0} = s, \\ & \mathbf{x}_{k+1} = f_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \\ & \mathbf{h}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq 0, \\ & \mathbf{h}_{\boldsymbol{\theta}}^{f}\left(\mathbf{x}_{N}\right) \leq 0, \end{split}$$

Optimal policy: $\pi_{\theta}(s) := u_0^{\star}(s, \theta)$ deterministic

- Typically
 - f_{θ} "exact" or from system identification
 - ▶ ℓ_{θ} , \mathbf{h}_{θ} given
 - $\mathbf{h}_{\theta}^{\mathrm{f}}$ invariant set, V_{θ}^{f} Lyapunov function
- If $\mathbf{f}_{\boldsymbol{\theta}}$ exact and $N \to \infty:$ asymptotic stability + optimal closed-loop performance
- ullet In practice: model inaccuracy \implies some form of practical stability and suboptimal
- Let RL adapt heta to recover optimality

- A technique to solve a stochastic optimal control problem
 - Many similarities with Dynamic Programming
 - Based on sampling
 - Model based / model free

- A technique to solve a stochastic optimal control problem
 - Many similarities with Dynamic Programming
 - Based on sampling
 - Model based / model free
- Cross-disciplinary approach
 - Computer Science
 - Optimal Control
 - Systems / Control Theory
 - Statistics

- A technique to solve a stochastic optimal control problem
 - Many similarities with Dynamic Programming
 - Based on sampling
 - Model based / model free
- Cross-disciplinary approach
 - Computer Science
 - Optimal Control
 - Systems / Control Theory
 - Statistics
- Important success stories
 - Aerobatic helicopter flight
 - Win against Chess, Shogi and Go masters
 - Learn to beat the best Chess algorithm in a matter of few hours

- A technique to solve a stochastic optimal control problem
 - Many similarities with Dynamic Programming
 - Based on sampling
 - Model based / model free
- Cross-disciplinary approach
 - Computer Science
 - Optimal Control
 - Systems / Control Theory
 - Statistics
- Important success stories
 - Aerobatic helicopter flight
 - Win against Chess, Shogi and Go masters
 - Learn to beat the best Chess algorithm in a matter of few hours
- Limitations
 - Theoretical foundation of some algorithms not fully developed
 - No stability and safety guarantees

- A technique to solve a stochastic optimal control problem
 - Many similarities with Dynamic Programming
 - Based on sampling
 - Model based / model free
- Cross-disciplinary approach
 - Computer Science
 - Optimal Control
 - Systems / Control Theory
 - Statistics
- Important success stories
 - Aerobatic helicopter flight
 - Win against Chess, Shogi and Go masters
 - Learn to beat the best Chess algorithm in a matter of few hours
- Limitations
 - Theoretical foundation of some algorithms not fully developed
 - No stability and safety guarantees
- Advantages
 - Optimality for the true system

• Markov Chain defined by

 $\mathbb{P}[\,\mathbf{s}_{\!+}\,|\,\mathbf{s},\mathbf{a}\,] \qquad \qquad \mathsf{equivalent of} \qquad \qquad \mathbf{s}_{\!+}=\mathbf{f}(\mathbf{s},\mathbf{a},\mathbf{w})$

probability (density) of transitioning from state s to state $s_{\rm +}$ when taking action a

• Markov Chain defined by

 $\mathbb{P}[\,\mathbf{s_+}\,|\,\mathbf{s},\mathbf{a}\,] \qquad \qquad \mathsf{equivalent of} \qquad \qquad \mathbf{s_+} = \mathbf{f}(\mathbf{s},\mathbf{a},\mathbf{w})$

probability (density) of transitioning from state s to state s₊ when taking action a
Stochastic policy (includes deterministic as special case)

 $\pi \left[\mathbf{a} \, | \, \mathbf{s} \,
ight] \in \mathbb{R}_+$ deterministic: $\mathbf{a} = \pi(\mathbf{s})$

assigns the probability (density) of taking action ${\bf a}$ for a given state ${\bf s}$

• Markov Chain defined by

 $\mathbb{P}[\,\mathbf{s_{+}}\,|\,\mathbf{s},\mathbf{a}\,] \qquad \qquad \mathsf{equivalent of} \qquad \qquad \mathbf{s_{+}}=\mathbf{f}(\mathbf{s},\mathbf{a},\mathbf{w})$

probability (density) of transitioning from state s to state s₊ when taking action a
Stochastic policy (includes deterministic as special case)

 $\pi \left[\mathbf{a} \, | \, \mathbf{s}
ight] \in \mathbb{R}_+$ deterministic: $\mathbf{a} = \pi(\mathbf{s})$

assigns the probability (density) of taking action a for a given state sExpected discounted cost (return):

$$J(\pi) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} L(\mathbf{s}_{k}, \mathbf{a}_{k})\right]$$

where \mathbf{a}_k is drawn from policy π . Initial conditions \mathbf{s}_0 can be fixed or random. • Discount factor $\gamma \in [0, 1]$

• Markov Chain defined by

 $\mathbb{P}[\,\mathbf{s_{+}}\,|\,\mathbf{s},\mathbf{a}\,] \qquad \qquad \mathsf{equivalent of} \qquad \qquad \mathbf{s_{+}}=\mathbf{f}(\mathbf{s},\mathbf{a},\mathbf{w})$

probability (density) of transitioning from state s to state s₊ when taking action a
Stochastic policy (includes deterministic as special case)

 $\pi \left[\mathbf{a} \, | \, \mathbf{s}
ight] \in \mathbb{R}_+$ deterministic: $\mathbf{a} = \pi(\mathbf{s})$

assigns the probability (density) of taking action a for a given state sExpected discounted cost (return):

$$J(\pi) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} L(\mathbf{s}_{k}, \mathbf{a}_{k})\right]$$

where a_k is drawn from policy π . Initial conditions s_0 can be fixed or random. • Discount factor $\gamma \in [0, 1]$

• Markov Chain defined by

 $\mathbb{P}[\,\mathbf{s_{+}}\,|\,\mathbf{s},\mathbf{a}\,] \qquad \qquad \mathsf{equivalent of} \qquad \qquad \mathbf{s_{+}}=\mathbf{f}(\mathbf{s},\mathbf{a},\mathbf{w})$

probability (density) of transitioning from state s to state s₊ when taking action a
Stochastic policy (includes deterministic as special case)

 $\pi \left[\mathbf{a} \, | \, \mathbf{s} \,
ight] \in \mathbb{R}_+$ deterministic: $\mathbf{a} = \pi(\mathbf{s})$

assigns the probability (density) of taking action a for a given state sExpected discounted cost (return):

$$J(\pi) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} L(\mathbf{s}_{k}, \mathbf{a}_{k})\right]$$

where \mathbf{a}_k is drawn from policy π . Initial conditions \mathbf{s}_0 can be fixed or random.

- Discount factor $\gamma \in [0, 1]$
- Markov Decision Process (MDP): find π_{\star} solution of

$$\pi_{\star} := \arg\min_{\pi} J(\pi)$$

• Markov Chain defined by

 $\mathbb{P}[\mathbf{s}_+ \,|\, \mathbf{s}, \mathbf{a}]$ equivalent of $\mathbf{s}_+ = \mathbf{f}(\mathbf{s}, \mathbf{a}, \mathbf{w})$

probability (density) of transitioning from state s to state s₊ when taking action a
Stochastic policy (includes deterministic as special case)

 $\pi \left[\mathbf{a} \, | \, \mathbf{s}
ight] \in \mathbb{R}_+$ deterministic: $\mathbf{a} = \pi(\mathbf{s})$

assigns the probability (density) of taking action a for a given state sExpected discounted cost (return):

$$J(\pi) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} L(\mathbf{s}_{k}, \mathbf{a}_{k})\right]$$

where \mathbf{a}_k is drawn from policy π . Initial conditions \mathbf{s}_0 can be fixed or random.

- Discount factor $\gamma \in [0, 1]$
- Markov Decision Process (MDP): find π_{\star} solution of

$$\pi_{\star} := \arg\min_{\pi} J(\pi)$$

• Optimal parametrized policy π_{θ} given by:

$$\theta_{\star} := \arg\min_{\theta} J(\pi_{\theta})$$

• Markov Chain defined by

 $\mathbb{P}[\,\mathbf{s}_{\!+}\,|\,\mathbf{s},\mathbf{a}\,] \qquad \qquad \mathsf{equivalent of} \qquad \qquad \mathbf{s}_{\!+}=\mathbf{f}(\mathbf{s},\mathbf{a},\mathbf{w})$

probability (density) of transitioning from state s to state s₊ when taking action a
Stochastic policy (includes deterministic as special case)

$$\pi \left[\mathbf{a} \, | \, \mathbf{s}
ight] \in \mathbb{R}_+$$
 deterministic: $\mathbf{a} = \pi(\mathbf{s})$

assigns the probability (density) of taking action a for a given state sExpected discounted cost (return):

$$J(\pi) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} L(\mathbf{s}_{k}, \mathbf{a}_{k})\right]$$

where \mathbf{a}_k is drawn from policy π . Initial conditions \mathbf{s}_0 can be fixed or random.

- Discount factor $\gamma \in [0, 1]$
- Markov Decision Process (MDP): find π_{\star} solution of

$$\pi_{\star} := \arg\min_{\pi} J(\pi)$$

• Optimal parametrized policy π_{θ} given by:

$$\boldsymbol{ heta}_{\star} := rg\min_{\boldsymbol{ heta}} J(\pi_{\boldsymbol{ heta}})$$

RL (approximately) solves the MDP in a sample-based fashion.

• Value function:

$$egin{aligned} m{V}_{\pi}\left(\mathbf{s}
ight) = \mathbb{E}_{\pi}\left[\left.\sum_{k=0}^{\infty}\gamma^{k}L\left(\mathbf{s}_{k},\mathbf{a}_{k}
ight)
ight| \mathbf{s}_{0} = \mathbf{s},\,\mathbf{a}_{k}\sim\pi[.\left\,|\,\mathbf{s}_{k}]
ight] \end{aligned}$$

gives the expected cost for policy π , starting from given initial conditions s

• Value function:

$$egin{aligned} m{V}_{\pi}\left(\mathbf{s}
ight) = \mathbb{E}_{\pi}\left[\left.\sum_{k=0}^{\infty}\gamma^{k}L\left(\mathbf{s}_{k},\mathbf{a}_{k}
ight)
ight|\,\mathbf{s}_{0}=\mathbf{s},\,\mathbf{a}_{k}\sim\pi[.\,|\,\mathbf{s}_{k}]
ight] \end{aligned}$$

gives the expected cost for policy π , starting from given initial conditions s

• Note that: $J(\pi) = \mathbb{E}_{\rho^{s}}[V_{\pi}(s)]$, for some initial probability (density) ρ^{s}

• Value function:

$$V_{\pi}\left(\mathbf{s}
ight)=\mathbb{E}_{\pi}\left[\left.\sum_{k=0}^{\infty}\gamma^{k}L\left(\mathbf{s}_{k},\mathbf{a}_{k}
ight)
ight|\,\mathbf{s}_{0}=\mathbf{s},\,\mathbf{a}_{k}\sim\pi[.\,|\,\mathbf{s}_{k}]
ight]$$

gives the expected cost for policy $\pi,$ starting from given initial conditions ${\bf s}$

- Note that: $J(\pi) = \mathbb{E}_{\rho^{s}}[V_{\pi}(s)]$, for some initial probability (density) ρ^{s}
- Action-Value function:

$$egin{aligned} \mathcal{Q}_{\pi}\left(\mathbf{s},\mathbf{a}
ight) = \mathbb{E}_{\pi}\left[\left.\sum_{k=0}^{\infty}\gamma^{k}\mathcal{L}\left(\mathbf{s}_{k},\mathbf{a}_{k}
ight)
ight| \mathbf{s}_{0} = \mathbf{s},\,\mathbf{a}_{0} = \mathbf{a},\,\mathbf{a}_{k>0} \sim \pi[.\,|\,\mathbf{s}_{k}] \end{aligned}
ight] \end{aligned}$$

gives the expected cost for policy π , starting from given initial condition s, and using action a as first input (policy π after that)

• Value function:

$$V_{\pi}\left(\mathbf{s}
ight)=\mathbb{E}_{\pi}\left[\left.\sum_{k=0}^{\infty}\gamma^{k}L\left(\mathbf{s}_{k},\mathbf{a}_{k}
ight)
ight|\,\mathbf{s}_{0}=\mathbf{s},\,\mathbf{a}_{k}\sim\pi[.\,|\,\mathbf{s}_{k}]
ight]$$

gives the expected cost for policy $\pi,$ starting from given initial conditions ${\bf s}$

- Note that: $J(\pi) = \mathbb{E}_{\rho^{s}}[V_{\pi}(s)]$, for some initial probability (density) ρ^{s}
- Action-Value function:

$$egin{aligned} \mathcal{Q}_{\pi}\left(\mathbf{s},\mathbf{a}
ight) = \mathbb{E}_{\pi}\left[\left.\sum_{k=0}^{\infty}\gamma^{k}\mathcal{L}\left(\mathbf{s}_{k},\mathbf{a}_{k}
ight)
ight| \mathbf{s}_{0} = \mathbf{s}, \ \mathbf{a}_{0} = \mathbf{a}, \ \mathbf{a}_{k>0} \sim \pi[.\left|\mathbf{s}_{k}
ight] \end{aligned}$$

gives the expected cost for policy π , starting from given initial condition s, and using action a as first input (policy π after that)

• Optimal Value functions

Notation:

$$V_{\star}\left(\mathrm{s}
ight)=V_{oldsymbol{\pi}_{\star}}\left(\mathrm{s}
ight)\qquad \qquad Q_{\star}\left(\mathrm{s},\mathrm{a}
ight)=Q_{oldsymbol{\pi}_{\star}}\left(\mathrm{s},\mathrm{a}
ight)$$

• Value function:

$$V_{\pi}\left(\mathbf{s}
ight)=\mathbb{E}_{\pi}\left[\left.\sum_{k=0}^{\infty}\gamma^{k}L\left(\mathbf{s}_{k},\mathbf{a}_{k}
ight)
ight|\,\mathbf{s}_{0}=\mathbf{s},\,\mathbf{a}_{k}\sim\pi[.\,|\,\mathbf{s}_{k}]
ight]$$

gives the expected cost for policy $\pi,$ starting from given initial conditions ${\bf s}$

- Note that: $J(\pi) = \mathbb{E}_{\rho^{s}}[V_{\pi}(s)]$, for some initial probability (density) ρ^{s}
- Action-Value function:

$$egin{aligned} \mathcal{Q}_{\pi}\left(\mathbf{s},\mathbf{a}
ight) = \mathbb{E}_{\pi}\left[\left.\sum_{k=0}^{\infty}\gamma^{k}\mathcal{L}\left(\mathbf{s}_{k},\mathbf{a}_{k}
ight)
ight| \mathbf{s}_{0} = \mathbf{s}, \ \mathbf{a}_{0} = \mathbf{a}, \ \mathbf{a}_{k>0} \sim \pi[.\left|\mathbf{s}_{k}
ight] \end{aligned}$$

gives the expected cost for policy π , starting from given initial condition s, and using action a as first input (policy π after that)

• Optimal Value functions

Notation:

$$V_{\star}\left(\mathrm{s}
ight)=V_{{m \pi}_{\star}}\left(\mathrm{s}
ight)\qquad \qquad Q_{\star}\left(\mathrm{s},\mathrm{a}
ight)=Q_{{m \pi}_{\star}}\left(\mathrm{s},\mathrm{a}
ight)$$

Properties:

$$V_{\star}\left(\mathrm{s}
ight)=\min_{\mathrm{a}}Q_{\star}\left(\mathrm{s},\mathrm{a}
ight)\qquad\qquad\pi_{\star}\left(\mathrm{s}
ight)=rg\min_{\mathrm{a}}Q_{\star}\left(\mathrm{s},\mathrm{a}
ight)$$

Form function approximators:

 $Q_{\theta}(\mathbf{s}, \mathbf{a}), V_{\theta}(\mathbf{s}), \pi_{\theta}(\mathbf{s})$

via ad-hoc parametrization

Form function approximators:

 $Q_{\theta}\left(\mathrm{s},\mathrm{a}
ight), \ V_{\theta}\left(\mathrm{s}
ight), \ \pi_{\theta}\left(\mathrm{s}
ight)$

via ad-hoc parametrization

• *Q*-learning methods adjust θ to get

$$\min_{\boldsymbol{\theta}} \mathbb{E}\left[\left(\boldsymbol{Q}_{\star}\left(\mathbf{s},\mathbf{a}\right)-\boldsymbol{Q}_{\boldsymbol{\theta}}\left(\mathbf{s},\mathbf{a}\right)\right)^{2}\right]$$

Yields policy:

$$\pi_{\theta}(\mathbf{s}) = \mathbf{a} \min_{\mathbf{a}} \ Q_{\theta}(\mathbf{s}, \mathbf{a}) \approx \mathbf{a} \min_{\mathbf{a}} \ Q_{\star}(\mathbf{s}, \mathbf{a}) = \pi_{\star}(\mathbf{s})$$

Form function approximators:

 $Q_{ heta}\left(\mathrm{s},\mathrm{a}
ight),\ V_{ heta}\left(\mathrm{s}
ight),\ \pi_{ heta}\left(\mathrm{s}
ight)$

via ad-hoc parametrization

• Q-learning methods adjust θ to get

$$\min_{\boldsymbol{\theta}} \mathbb{E}\left[\left(\boldsymbol{Q}_{\star}\left(\mathbf{s},\mathbf{a}\right)-\boldsymbol{Q}_{\boldsymbol{\theta}}\left(\mathbf{s},\mathbf{a}\right)\right)^{2}\right]$$

Yields policy:

$$\pi_{\theta}\left(s\right) = a\min_{a} \ Q_{\theta}\left(s,a\right) \approx a\min_{a} \ Q_{\star}\left(s,a\right) = \pi_{\star}\left(s\right)$$

• Policy gradient methods adjust θ to get

$$\max_{\theta} J(\pi_{\theta}) \qquad \Leftrightarrow \qquad \nabla_{\theta} J(\pi_{\theta}) = 0$$

yields policy $\pi_{ heta}\left(\mathrm{s}
ight)pprox\pi_{\star}\left(\mathrm{s}
ight)$ directly

Form function approximators:

 $Q_{ heta}\left(\mathrm{s},\mathrm{a}
ight),\ V_{ heta}\left(\mathrm{s}
ight),\ \pi_{ heta}\left(\mathrm{s}
ight)$

via ad-hoc parametrization

• Q-learning methods adjust θ to get

$$\min_{\boldsymbol{\theta}} \mathbb{E}\left[\left(\boldsymbol{Q}_{\star}\left(\mathbf{s},\mathbf{a}\right)-\boldsymbol{Q}_{\boldsymbol{\theta}}\left(\mathbf{s},\mathbf{a}\right)\right)^{2}\right]$$

Yields policy:

$$\pi_{\theta}\left(\mathbf{s}\right) = \mathbf{a}\min_{\mathbf{a}} \ Q_{\theta}\left(\mathbf{s},\mathbf{a}\right) \approx \mathbf{a}\min_{\mathbf{a}} \ Q_{\star}\left(\mathbf{s},\mathbf{a}\right) = \pi_{\star}\left(\mathbf{s}\right)$$

• Policy gradient methods adjust θ to get

$$\max_{\theta} J(\pi_{\theta}) \qquad \Leftrightarrow \qquad \nabla_{\theta} J(\pi_{\theta}) = 0$$

yields policy $\pi_{ heta}\left(\mathrm{s}
ight)pprox\pi_{\star}\left(\mathrm{s}
ight)$ directly

All approaches hinge on building either Q_{θ} or $\{\pi_{\theta}, V_{\theta}\}$

Form function approximators:

 $Q_{ heta}\left(\mathrm{s},\mathrm{a}
ight),\ V_{ heta}\left(\mathrm{s}
ight),\ \pi_{ heta}\left(\mathrm{s}
ight)$

via ad-hoc parametrization

• Q-learning methods adjust θ to get

$$\min_{\boldsymbol{\theta}} \mathbb{E}\left[\left(\boldsymbol{Q}_{\star}\left(\mathbf{s},\mathbf{a}\right)-\boldsymbol{Q}_{\boldsymbol{\theta}}\left(\mathbf{s},\mathbf{a}\right)\right)^{2}\right]$$

Yields policy:

$$\pi_{\theta}\left(s\right) = a\min_{a} \ Q_{\theta}\left(s,a\right) \approx a\min_{a} \ Q_{\star}\left(s,a\right) = \pi_{\star}\left(s\right)$$

• Policy gradient methods adjust θ to get

$$\max_{\theta} J(\pi_{\theta}) \qquad \Leftrightarrow \qquad \nabla_{\theta} J(\pi_{\theta}) = 0$$

yields policy $\pi_{ heta}\left(\mathrm{s}
ight)pprox\pi_{\star}\left(\mathrm{s}
ight)$ directly

All approaches hinge on building either Q_{θ} or $\{\pi_{\theta}, V_{\theta}\}$

Most approaches are **derivative-based**: we need $\nabla_{\theta} \pi_{\theta}, \nabla_{\theta} V_{\theta}, \nabla_{\theta} Q_{\theta}$

Form function approximators:

 $Q_{ heta}\left(\mathrm{s,a}
ight) ,\ V_{ heta}\left(\mathrm{s}
ight) ,\ \pi_{ heta}\left(\mathrm{s}
ight) ,\ \pi_{ heta}\left(\mathrm{s}
ight)$

via ad-hoc parametrization

• *Q*-learning methods adjust θ to get

$$\min_{\boldsymbol{\theta}} \mathbb{E}\left[\left(\boldsymbol{Q}_{\star}\left(\mathbf{s},\mathbf{a}\right)-\boldsymbol{Q}_{\boldsymbol{\theta}}\left(\mathbf{s},\mathbf{a}\right)\right)^{2}\right]$$

Yields policy:

$$\pi_{\theta}\left(\mathbf{s}\right) = \mathbf{a}\min_{\mathbf{a}} \ Q_{\theta}\left(\mathbf{s},\mathbf{a}\right) \approx \mathbf{a}\min_{\mathbf{a}} \ Q_{\star}\left(\mathbf{s},\mathbf{a}\right) = \pi_{\star}\left(\mathbf{s}\right)$$

• Policy gradient methods adjust θ to get

$$\max_{\theta} J(\pi_{\theta}) \qquad \Leftrightarrow \qquad \nabla_{\theta} J(\pi_{\theta}) = 0$$

yields policy $\pi_{ heta}\left(\mathrm{s}
ight)pprox\pi_{\star}\left(\mathrm{s}
ight)$ directly

All approaches hinge on building either Q_{θ} or $\{\pi_{\theta}, V_{\theta}\}$

Most approaches are **derivative-based**: we need $\nabla_{\theta} \pi_{\theta}, \nabla_{\theta} V_{\theta}, \nabla_{\theta} Q_{\theta}$

Nowadays RL typically relies on DNNs as function approximators:

Form function approximators:

 $Q_{ heta}\left(\mathrm{s,a}
ight) ,\ V_{ heta}\left(\mathrm{s}
ight) ,\ \pi_{ heta}\left(\mathrm{s}
ight) ,\ \pi_{ heta}\left(\mathrm{s}
ight)$

via ad-hoc parametrization

• *Q*-learning methods adjust θ to get

$$\min_{\boldsymbol{\theta}} \mathbb{E}\left[\left(\boldsymbol{Q}_{\star}\left(\mathbf{s},\mathbf{a}\right)-\boldsymbol{Q}_{\boldsymbol{\theta}}\left(\mathbf{s},\mathbf{a}\right)\right)^{2}\right]$$

Yields policy:

$$\pi_{\theta}\left(\mathbf{s}\right) = \mathbf{a}\min_{\mathbf{a}} \ Q_{\theta}\left(\mathbf{s},\mathbf{a}\right) \approx \mathbf{a}\min_{\mathbf{a}} \ Q_{\star}\left(\mathbf{s},\mathbf{a}\right) = \pi_{\star}\left(\mathbf{s}\right)$$

• Policy gradient methods adjust θ to get

$$\max_{\theta} J(\pi_{\theta}) \qquad \Leftrightarrow \qquad \nabla_{\theta} J(\pi_{\theta}) = 0$$

yields policy $\pi_{ heta}\left(\mathrm{s}
ight)pprox\pi_{\star}\left(\mathrm{s}
ight)$ directly

All approaches hinge on building either Q_{θ} or $\{\pi_{\theta}, V_{\theta}\}$

Most approaches are **derivative-based**: we need $\nabla_{\theta} \pi_{\theta}, \nabla_{\theta} V_{\theta}, \nabla_{\theta} Q_{\theta}$

Nowadays RL typically relies on DNNs as function approximators: difficult to understand, no strong guarantees

Form function approximators:

 $Q_{\theta}\left(\mathrm{s},\mathrm{a}
ight), \ V_{\theta}\left(\mathrm{s}
ight), \ \pi_{\theta}\left(\mathrm{s}
ight)$

via ad-hoc parametrization

$$\min_{\mathbf{u},\mathbf{x}} V_{\theta}^{f}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \ell_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k})$$
s.t. $\mathbf{x}_{0} = \mathbf{s},$
 $\mathbf{x}_{k+1} = \mathbf{f}_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k}),$
 $\mathbf{h}_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq 0,$
 $\mathbf{h}_{\theta}^{f}(\mathbf{x}_{N}) < 0.$

• Q-learning methods adjust θ to get

$$\min_{\boldsymbol{\theta}} \mathbb{E}\left[\left(\boldsymbol{Q}_{\star}\left(\mathbf{s},\mathbf{a}\right)-\boldsymbol{Q}_{\boldsymbol{\theta}}\left(\mathbf{s},\mathbf{a}\right)\right)^{2}\right]$$

Yields policy:

 $\pi_{\theta}\left(\mathbf{s}\right) = \mathbf{a}\min_{\mathbf{a}} \ Q_{\theta}\left(\mathbf{s},\mathbf{a}\right) \approx \mathbf{a}\min_{\mathbf{a}} \ Q_{\star}\left(\mathbf{s},\mathbf{a}\right) = \pi_{\star}\left(\mathbf{s}\right)$

• Policy gradient methods adjust θ to get

$$\max_{\theta} J(\pi_{\theta}) \qquad \Leftrightarrow \qquad \nabla_{\theta} J(\pi_{\theta}) = 0$$

yields policy $\pi_{ heta}\left(\mathrm{s}
ight)pprox\pi_{\star}\left(\mathrm{s}
ight)$ directly

All approaches hinge on building either Q_{θ} or $\{\pi_{\theta}, V_{\theta}\}$

Most approaches are **derivative-based**: we need $\nabla_{\theta} \pi_{\theta}, \nabla_{\theta} V_{\theta}, \nabla_{\theta} Q_{\theta}$

Nowadays RL typically relies on DNNs as function approximators: difficult to understand, no strong guarantees

Alternative: use MPC as function approximator

Form function approximators:

 $Q_{\theta}\left(\mathbf{s},\mathbf{a}\right), \ V_{\theta}\left(\mathbf{s}\right), \ \pi_{\theta}\left(\mathbf{s}\right)$

via ad-hoc parametrization

$$\min_{\mathbf{u},\mathbf{x}} V_{\theta}^{f}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \ell_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k})$$
s.t. $\mathbf{x}_{0} = \mathbf{s},$

$$\mathbf{x}_{k+1} = \mathbf{f}_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k}),$$

$$\mathbf{h}_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq 0,$$

$$\mathbf{h}_{\theta}^{f}(\mathbf{x}_{N}) < 0.$$

• Q-learning methods adjust θ to get

$$\min_{\boldsymbol{\theta}} \mathbb{E}\left[\left(\boldsymbol{Q}_{\star}\left(\mathbf{s},\mathbf{a}\right)-\boldsymbol{Q}_{\boldsymbol{\theta}}\left(\mathbf{s},\mathbf{a}\right)\right)^{2}\right]$$

Yields policy:

 $\pi_{\theta}\left(\mathbf{s}\right) = \mathbf{a}\min_{\mathbf{a}} \ Q_{\theta}\left(\mathbf{s},\mathbf{a}\right) \approx \mathbf{a}\min_{\mathbf{a}} \ Q_{\star}\left(\mathbf{s},\mathbf{a}\right) = \pi_{\star}\left(\mathbf{s}\right)$

• Policy gradient methods adjust θ to get

$$\max_{\theta} J(\pi_{\theta}) \qquad \Leftrightarrow \qquad \nabla_{\theta} J(\pi_{\theta}) = 0$$

yields policy $\pi_{ heta}\left(\mathrm{s}
ight)pprox\pi_{\star}\left(\mathrm{s}
ight)$ directly

All approaches hinge on building either Q_{θ} or $\{\pi_{\theta}, V_{\theta}\}$

Most approaches are **derivative-based**: we need $\nabla_{\theta} \pi_{\theta}, \nabla_{\theta} V_{\theta}, \nabla_{\theta} Q_{\theta}$

Nowadays RL typically relies on DNNs as function approximators: difficult to understand, no strong guarantees

Alternative: use MPC as function approximator this provides explainability and makes it possible to guarantee safety and stability

Form function approximators:

 $Q_{\theta}\left(\mathbf{s},\mathbf{a}\right), \ V_{\theta}\left(\mathbf{s}\right), \ \pi_{\theta}\left(\mathbf{s}\right)$

via ad-hoc parametrization

$$\min_{\mathbf{u},\mathbf{x}} V_{\theta}^{f}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \ell_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k})$$
s.t. $\mathbf{x}_{0} = \mathbf{s},$

$$\mathbf{x}_{k+1} = \mathbf{f}_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k}),$$

$$\mathbf{h}_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq 0,$$

$$\mathbf{h}_{\theta}^{f}(\mathbf{x}_{N}) < 0.$$

• Q-learning methods adjust θ to get

$$\min_{\boldsymbol{\theta}} \mathbb{E}\left[\left(\boldsymbol{Q}_{\star}\left(\mathbf{s},\mathbf{a}\right)-\boldsymbol{Q}_{\boldsymbol{\theta}}\left(\mathbf{s},\mathbf{a}\right)\right)^{2}\right]$$

Yields policy:

 $\pi_{\theta}\left(\mathbf{s}\right) = \mathbf{a}\min_{\mathbf{a}} \ Q_{\theta}\left(\mathbf{s},\mathbf{a}\right) \approx \mathbf{a}\min_{\mathbf{a}} \ Q_{\star}\left(\mathbf{s},\mathbf{a}\right) = \pi_{\star}\left(\mathbf{s}\right)$

• Policy gradient methods adjust θ to get

$$\max_{\theta} J(\pi_{\theta}) \qquad \Leftrightarrow \qquad \nabla_{\theta} J(\pi_{\theta}) = 0$$

yields policy $\pi_{ heta}\left(\mathrm{s}
ight)pprox\pi_{\star}\left(\mathrm{s}
ight)$ directly

All approaches hinge on building either Q_{θ} or $\{\pi_{\theta}, V_{\theta}\}$

Most approaches are **derivative-based**: we need $\nabla_{\theta} \pi_{\theta}, \nabla_{\theta} V_{\theta}, \nabla_{\theta} Q_{\theta}$

Nowadays RL typically relies on DNNs as function approximators: difficult to understand, no strong guarantees

Alternative: use MPC as function approximator

this provides explainability and makes it possible to guarantee safety and stability we need to differentiate MPC!

M. Zanon (IMT Lucca)

MPC and RL

MPC as a Function Approximator

MPC Tuning parameter θ , initial state s

$$\begin{split} \min_{\mathbf{x},\mathbf{u}} \quad & \sum_{k=0}^{N-1} \ell_{\boldsymbol{\theta}}(\mathbf{x},\mathbf{u}) + V_{\boldsymbol{\theta}}^{f}(\mathbf{x}_{N}) \\ \text{s.t.} \quad & \mathbf{x}_{0} = \mathbf{s} \\ & \mathbf{x}_{k+1} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}_{k},\mathbf{u}_{k}) \\ & \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}_{k},\mathbf{u}_{k}) \leq \mathbf{0} \\ & \mathbf{h}_{\boldsymbol{\theta}}^{f}(\mathbf{x}_{N}) \leq \mathbf{0} \end{split}$$
MPC Tuning parameter θ , initial state s

$$\begin{aligned} \pi_{\boldsymbol{\theta}}(\mathbf{s}) &= \mathbf{u}_{0}^{\star} & \mathbf{x}^{\star}, \mathbf{u}^{\star} = \arg\min_{\mathbf{x}, \mathbf{u}} \sum_{k=0}^{N-1} \ell_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{u}) + V_{\boldsymbol{\theta}}^{\mathrm{f}}(\mathbf{x}_{N}) \\ &\text{s.t.} \quad \mathbf{x}_{0} = \mathbf{s} \\ & \mathbf{x}_{k+1} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}_{k}, \mathbf{u}_{k}) \\ & \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq \mathbf{0} \\ & \mathbf{h}_{\boldsymbol{\theta}}^{f}(\mathbf{x}_{N}) \leq \mathbf{0} \end{aligned}$$

• MPC delivers a parametric deterministic policy $\pi_{ heta}$

MPC Tuning parameter θ , initial state s

$$\begin{aligned} \pi_{\theta}(\mathbf{s}) &= \mathbf{u}_{0}^{\star} & V_{\theta}^{\pi_{\theta}}(\mathbf{s}) = \min_{\mathbf{x},\mathbf{u}} \quad \sum_{k=0}^{N-1} \ell_{\theta}(\mathbf{x},\mathbf{u}) + V_{\theta}^{\mathbf{f}}(\mathbf{x}_{N}) \\ &\text{s.t.} \quad \mathbf{x}_{0} = \mathbf{s} \\ &\mathbf{x}_{k+1} = \mathbf{f}_{\theta}(\mathbf{x}_{k},\mathbf{u}_{k}) \\ &\mathbf{h}_{\theta}(\mathbf{x}_{k},\mathbf{u}_{k}) \leq \mathbf{0} \\ &\mathbf{h}_{\theta}^{f}(\mathbf{x}_{N}) \leq \mathbf{0} \end{aligned}$$

- MPC delivers a parametric deterministic policy $\pi_{ heta}$
- MPC delivers a parametric value function $V_{\theta}^{\pi_{\theta}}$

MPC Tuning parameter θ , initial state s, fixed policy a

$$\begin{aligned} \pi_{\boldsymbol{\theta}}(\mathbf{s}) &= \mathbf{u}_{0}^{\star} \qquad \qquad & Q_{\boldsymbol{\theta}}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}, \mathbf{a}) = \min_{\mathbf{x}, \mathbf{u}} \sum_{k=0}^{N-1} \ell_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{u}) + V_{\boldsymbol{\theta}}^{\mathbf{f}}(\mathbf{x}_{N}) \\ & \text{s.t.} \quad \mathbf{x}_{0} = \mathbf{s}, \quad \mathbf{u}_{0} = \mathbf{a} \\ & \mathbf{x}_{k+1} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}_{k}, \mathbf{u}_{k}) \\ & \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq \mathbf{0} \\ & \mathbf{h}_{\boldsymbol{\theta}}^{\mathbf{f}}(\mathbf{x}_{N}) \leq \mathbf{0} \end{aligned}$$

- MPC delivers a parametric deterministic policy $\pi_{ heta}$
- MPC delivers a parametric value function $V_{\theta}^{\pi_{\theta}}$
- MPC delivers a parametric action value function $Q_{\theta}^{\pi_{\theta}}$

MPC Tuning parameter θ , initial state s, fixed policy a

$$\begin{aligned} \pi_{\boldsymbol{\theta}}(\mathbf{s}) &= \mathbf{u}_{0}^{\star} \qquad \qquad & Q_{\boldsymbol{\theta}}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}, \mathbf{a}) = \min_{\mathbf{x}, \mathbf{u}} \sum_{k=0}^{N-1} \ell_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{u}) + V_{\boldsymbol{\theta}}^{\mathbf{f}}(\mathbf{x}_{N}) \\ & \text{s.t.} \quad \mathbf{x}_{0} = \mathbf{s}, \quad \mathbf{u}_{0} = \mathbf{a} \\ & \mathbf{x}_{k+1} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}_{k}, \mathbf{u}_{k}) \\ & \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq \mathbf{0} \\ & \mathbf{h}_{\boldsymbol{\theta}}^{\mathbf{f}}(\mathbf{x}_{N}) \leq \mathbf{0} \end{aligned}$$

- MPC delivers a parametric deterministic policy $\pi_{ heta}$
- MPC delivers a parametric value function $V_{\theta}^{\pi_{\theta}}$
- MPC delivers a parametric action value function $Q_{\theta}^{\pi_{\theta}}$
 - ▶ In practice be careful with $\mathbf{u}_0 = \mathbf{a}$: LICQ issues

MPC Tuning parameter θ , initial state s, fixed policy a

$$\begin{aligned} \pi_{\theta}(\mathbf{s}) &= \mathbf{u}_{0}^{\star} & \qquad Q_{\theta}^{\pi_{\theta}}(\mathbf{s}, \mathbf{a}) = \min_{\mathbf{x}, \mathbf{u}} \sum_{k=0}^{N-1} \ell_{\theta}(\mathbf{x}, \mathbf{u}) + V_{\theta}^{f}(\mathbf{x}_{N}) \\ &\text{s.t.} \quad \mathbf{x}_{0} = \mathbf{s}, \quad \mathbf{u}_{0} = \mathbf{a} \\ & \qquad \mathbf{x}_{k+1} = \mathbf{f}_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k}) \\ & \qquad \mathbf{h}_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq \mathbf{0} \\ & \qquad \mathbf{h}_{\theta}^{f}(\mathbf{x}_{N}) \leq \mathbf{0} \end{aligned}$$

- MPC delivers a parametric deterministic policy $\pi_{ heta}$
- MPC delivers a parametric value function $V_{\theta}^{\pi_{\theta}}$
- MPC delivers a parametric action value function $Q_{\theta}^{\pi_{\theta}}$
 - ▶ In practice be careful with $\mathbf{u}_0 = \mathbf{a}$: LICQ issues
- All these functions can be differentiated wrt θ
 - derivatives necessary in RL algorithms
 - need LICQ + few other conditions: mild requirements
 - if we can solve MPC we can differentiate it

MPC Tuning parameter θ , initial state s, fixed policy a

$$\begin{aligned} \pi_{\theta}(\mathbf{s}) &= \mathbf{u}_{0}^{\star} & \qquad Q_{\theta}^{\pi_{\theta}}(\mathbf{s}, \mathbf{a}) = \min_{\mathbf{x}, \mathbf{u}} \sum_{k=0}^{N-1} \ell_{\theta}(\mathbf{x}, \mathbf{u}) + V_{\theta}^{f}(\mathbf{x}_{N}) \\ &\text{s.t.} \quad \mathbf{x}_{0} = \mathbf{s}, \quad \mathbf{u}_{0} = \mathbf{a} \\ & \qquad \mathbf{x}_{k+1} = \mathbf{f}_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k}) \\ & \qquad \mathbf{h}_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq \mathbf{0} \\ & \qquad \mathbf{h}_{\theta}^{f}(\mathbf{x}_{N}) \leq \mathbf{0} \end{aligned}$$

- MPC delivers a parametric deterministic policy $\pi_{ heta}$
- MPC delivers a parametric value function $V_{\theta}^{\pi_{\theta}}$
- MPC delivers a parametric action value function $Q_{\theta}^{\pi_{\theta}}$
 - ▶ In practice be careful with $\mathbf{u}_0 = \mathbf{a}$: LICQ issues
- All these functions can be differentiated wrt θ
 - derivatives necessary in RL algorithms
 - need LICQ + few other conditions: mild requirements
 - if we can solve MPC we can differentiate it

MPC has all the properties required from a function approximator

- We can let RL learn the best heta
- We can let MPC enforce stability and safety guarantees in RL

MPC is a parametric NLP

MPC:

$$\begin{split} \min_{\mathbf{x},\mathbf{u}} \quad & \sum_{k=0}^{N-1} \ell_{\boldsymbol{\theta}}(\mathbf{x}_k,\mathbf{u}_k) + V_{\boldsymbol{\theta}}^{\mathbf{f}}(\mathbf{x}_N) \\ \text{s.t.} \quad & \mathbf{x}_0 = \mathbf{s} \\ & \mathbf{x}_{k+1} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}_k,\mathbf{u}_k) \\ & \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}_k,\mathbf{u}_k) \leq \mathbf{0} \\ & \mathbf{h}_{\boldsymbol{\theta}}^{\mathbf{f}}(\mathbf{x}_N) \leq \mathbf{0} \end{split}$$

MPC is a parametric NLP

MPC:

$$\begin{split} \min_{\mathbf{x},\mathbf{u}} \quad & \sum_{k=0}^{N-1} \ell_{\boldsymbol{\theta}}(\mathbf{x}_k,\mathbf{u}_k) + V_{\boldsymbol{\theta}}^{\mathrm{f}}(\mathbf{x}_N) \\ \text{s.t.} \quad & \mathbf{x}_0 = \mathbf{s} \\ & \mathbf{x}_{k+1} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}_k,\mathbf{u}_k) \\ & \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}_k,\mathbf{u}_k) \leq \mathbf{0} \\ & \mathbf{h}_{\boldsymbol{\theta}}^{\mathrm{f}}(\mathbf{x}_N) \leq \mathbf{0} \end{split}$$

Parametric NLP:

$$\begin{split} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \quad \bar{f}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \\ \text{s.t.} \quad \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) = \mathbf{0} \\ \quad \bar{\mathbf{h}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \leq \mathbf{0} \end{split}$$

where

$$ar{\mathbf{x}} = (\mathbf{x}, \mathbf{u})$$

 $ar{\mathbf{p}} = oldsymbol{ heta}$

MPC is a parametric NLP

MPC:

$$\begin{split} \min_{\mathbf{x},\mathbf{u}} \quad & \sum_{k=0}^{N-1} \ell_{\boldsymbol{\theta}}(\mathbf{x}_k,\mathbf{u}_k) + V_{\boldsymbol{\theta}}^{\mathbf{f}}(\mathbf{x}_N) \\ \text{s.t.} \quad & \mathbf{x}_0 = \mathbf{s} \\ & \mathbf{x}_{k+1} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}_k,\mathbf{u}_k) \\ & \mathbf{h}_{\boldsymbol{\theta}}(\mathbf{x}_k,\mathbf{u}_k) \leq \mathbf{0} \\ & \mathbf{h}_{\boldsymbol{\theta}}^{\mathbf{f}}(\mathbf{x}_N) \leq \mathbf{0} \end{split}$$

Parametric NLP:

$$\begin{split} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \quad \bar{f}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \\ \text{s.t.} \quad \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) = \mathbf{0} \\ \quad \bar{\mathbf{h}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \leq \mathbf{0} \end{split}$$

where

$$ar{\mathbf{x}} = (\mathbf{x}, \mathbf{u})$$

 $ar{\mathbf{p}} = oldsymbol{ heta}$

Two questions require a solid answer:

- How do we solve NLPs?
- How do we differentiate NLPs?

How Do We Solve Parametric NLPs?

NLP

Quadratic approximation

$$\begin{array}{l} \min_{\bar{\mathbf{x}}} \quad \bar{f}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \\ \text{s.t.} \quad \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) = 0 \\ \quad \bar{\mathbf{h}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \leq 0 \end{array}$$

$$\begin{split} \min_{\Delta \bar{\mathbf{x}}} & \Delta \bar{\mathbf{x}}^{\top} \boldsymbol{M} \Delta \bar{\mathbf{x}} + \boldsymbol{m}^{\top} \Delta \bar{\mathbf{x}} \\ \text{s.t.} & \boldsymbol{G} \Delta \bar{\mathbf{x}} + \boldsymbol{\bar{g}} = 0 \\ & \boldsymbol{H} \Delta \bar{\mathbf{x}} + \boldsymbol{\bar{h}} \leq 0 \end{split}$$

Iterative procedure:

- ${\scriptstyle \bullet}$ Given ${\bf \bar{x}}$
- Compute quadratic approximation
- Enforce $M \succ 0$
- Solve QP / linear system
- $\bullet\,$ Ensure progress by computing $\alpha\,$
- Take a step $\mathbf{\bar{x}} = \mathbf{\bar{x}} + \alpha \Delta \mathbf{\bar{x}}$

How Do We Solve Parametric NLPs?

NLP

Quadratic approximation

 $\begin{array}{ll} \min_{\mathbf{x}} & \bar{f}(\mathbf{\bar{x}}, \mathbf{\bar{p}}) & \min_{\Delta \mathbf{\bar{x}}} & \Delta \mathbf{\bar{x}}^{\top} \boldsymbol{M} \Delta \mathbf{\bar{x}} + \boldsymbol{m}^{\top} \Delta \mathbf{\bar{x}} \\ \text{s.t.} & \mathbf{\bar{g}}(\mathbf{\bar{x}}, \mathbf{\bar{p}}) = 0 & \text{s.t.} & \boldsymbol{G} \Delta \mathbf{\bar{x}} + \boldsymbol{\bar{g}} = 0 \\ & \mathbf{\bar{h}}(\mathbf{\bar{x}}, \mathbf{\bar{p}}) \leq 0 & \boldsymbol{H} \Delta \mathbf{\bar{x}} + \boldsymbol{\bar{h}} \leq 0 \end{array}$

Iterative procedure:

- ${\scriptstyle \bullet}~$ Given ${\bf \bar x}$
- Compute quadratic approximation
- Enforce $M \succ 0$
- Solve QP / linear system
- $\bullet\,$ Ensure progress by computing α
- Take a step $\mathbf{\bar{x}} = \mathbf{\bar{x}} + \alpha \Delta \mathbf{\bar{x}}$

Primal-dual solution

$$\mathbf{\bar{z}}^{\star}(\mathbf{\bar{p}}):=\left(\mathbf{\bar{x}}^{\star}(\mathbf{\bar{p}}),\mathbf{\bar{\lambda}}^{\star}(\mathbf{\bar{p}}),\mathbf{\bar{\mu}}^{\star}(\mathbf{\bar{p}})\right)$$

satisfies the KKT conditions

$$\mathbf{r}(\bar{\mathbf{z}},\bar{\mathbf{p}}) := \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}(\bar{\mathbf{x}},\bar{\boldsymbol{\lambda}},\bar{\boldsymbol{\mu}},\bar{\mathbf{p}}) \\ \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \\ \bar{\mathbf{h}}_{\mathbb{A}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \end{bmatrix} = \mathbf{0}$$
$$\bar{\boldsymbol{\mu}}_{\mathbb{A}^{c}}^{\star}(\bar{\mathbf{p}}) = \mathbf{0}$$

with active set $\mathbb A$ and

$$\mathcal{L}(ar{\mathrm{x}},ar{\lambda},ar{\mu},ar{\mathrm{p}}) := ar{f}(ar{\mathrm{x}},ar{\mathrm{p}}) + ar{\lambda}^ op ar{\mathrm{g}}(ar{\mathrm{x}},ar{\mathrm{p}}) + ar{\mu}^ op ar{\mathrm{h}}(ar{\mathrm{x}},ar{\mathrm{p}})$$

Parametric NLP:

$$\begin{split} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \ \bar{f}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \\ \text{s.t.} \ \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) &= 0 \end{split}$$

Parametric NLP:

KKT Conditions

$$\begin{split} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \ \bar{f}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \\ \text{s.t.} \ \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) = \mathbf{0} \end{split}$$

$$r(\bar{\mathbf{z}},\bar{\mathbf{p}}) := \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}(\bar{\mathbf{x}},\bar{\boldsymbol{\lambda}},\bar{\mathbf{p}}) \\ \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \end{bmatrix} = 0$$

Parametric NLP:

KKT Conditions

$$ar{\mathbf{x}}^{\star}(\mathbf{ar{p}}) := \arg\min_{\mathbf{x}} \ \ ar{f}(\mathbf{ar{x}},\mathbf{ar{p}})$$

s.t. $\mathbf{ar{g}}(\mathbf{ar{x}},\mathbf{ar{p}}) = \mathbf{0}$

$$r(\bar{\mathbf{z}},\bar{\mathbf{p}}) := \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}(\bar{\mathbf{x}},\bar{\boldsymbol{\lambda}},\bar{\mathbf{p}}) \\ \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \end{bmatrix} = \mathbf{0}$$

Implicit Function Theorem

Let \overline{z} be implicitly given by the (at least) C^1 function

$$r(ar{\mathbf{z}},ar{\mathbf{p}})=0$$
 with $abla_{ar{\mathbf{z}}}r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)$ full rank.

Then \exists a \mathcal{C}^1 function $\bar{\mathbf{z}}^*(\bar{\mathbf{p}})$ such that

$$r(\mathbf{\bar{z}}^{\star}(\mathbf{\bar{p}}),\mathbf{\bar{p}})=0$$

holds in a neighbourhood of $\mathbf{\bar{p}}$. Moreover:

$$abla_{ar{\mathbf{z}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)^{ op} rac{\mathrm{d}ar{\mathbf{z}}^{\star}(ar{\mathbf{p}})}{\mathrm{d}ar{\mathbf{p}}} = -rac{\partial}{\partialar{\mathbf{p}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)$$

Parametric NLP:

KKT Conditions

$$ar{\mathbf{x}}^{\star}(\mathbf{ar{p}}) := \arg\min_{\mathbf{x}} \ \ ar{f}(\mathbf{ar{x}},\mathbf{ar{p}})$$

s.t. $\mathbf{ar{g}}(\mathbf{ar{x}},\mathbf{ar{p}}) = \mathbf{0}$

$$r(\bar{\mathbf{z}},\bar{\mathbf{p}}) := \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}(\bar{\mathbf{x}},\bar{\boldsymbol{\lambda}},\bar{\mathbf{p}}) \\ \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \end{bmatrix} = 0$$

Implicit Function Theorem

Let \overline{z} be implicitly given by the (at least) C^1 function

 $r(\mathbf{ar{z}},\mathbf{ar{p}})=0 \quad \text{with} \quad
abla_{\mathbf{ar{z}}}r\left(\mathbf{ar{z}}^{\star}(\mathbf{ar{p}}),\mathbf{ar{p}}
ight) \quad \text{full rank.}$

Then \exists a \mathcal{C}^1 function $\bar{\mathbf{z}}^*(\bar{\mathbf{p}})$ such that

$$r(\mathbf{\bar{z}}^{\star}(\mathbf{\bar{p}}),\mathbf{\bar{p}})=0$$

holds in a neighbourhood of $\mathbf{\bar{p}}$. Moreover:

$$abla_{ar{\mathbf{z}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)^{ op} rac{\mathrm{d}ar{\mathbf{z}}^{\star}(ar{\mathbf{p}})}{\mathrm{d}ar{\mathbf{p}}} = -rac{\partial}{\partialar{\mathbf{p}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)$$

Is this enough?

Parametric NLP:

KKT Conditions

$$ar{\mathbf{x}}^{\star}(\mathbf{ar{p}}) := \arg\min_{\mathbf{x}} \ \ ar{f}(\mathbf{ar{x}},\mathbf{ar{p}})$$

s.t. $\mathbf{ar{g}}(\mathbf{ar{x}},\mathbf{ar{p}}) = \mathbf{0}$

$$r(\bar{\mathbf{z}},\bar{\mathbf{p}}) := \left[\begin{array}{c} \nabla_{\bar{\mathbf{x}}} \mathcal{L}(\bar{\mathbf{x}},\bar{\boldsymbol{\lambda}},\bar{\mathbf{p}}) \\ \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \end{array} \right] = 0$$

Implicit Function Theorem

Let \overline{z} be implicitly given by the (at least) C^1 function

 $r(\mathbf{\bar{z}},\mathbf{\bar{p}}) = 0$ with $\nabla_{\mathbf{\bar{z}}}r(\mathbf{\bar{z}}^{\star}(\mathbf{\bar{p}}),\mathbf{\bar{p}})$ full rank.

Then \exists a \mathcal{C}^1 function $\bar{\mathbf{z}}^*(\bar{\mathbf{p}})$ such that

$$r(\mathbf{\bar{z}}^{\star}(\mathbf{\bar{p}}),\mathbf{\bar{p}})=0$$

holds in a neighbourhood of $\mathbf{\bar{p}}$. Moreover:

$$abla_{ar{\mathbf{z}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)^{ op} rac{\mathrm{d}ar{\mathbf{z}}^{\star}(ar{\mathbf{p}})}{\mathrm{d}ar{\mathbf{p}}} = -rac{\partial}{\partialar{\mathbf{p}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)$$

Is this enough?

Not all KKT points are minima!

Parametric NLP:

KKT Conditions

$$ar{\mathbf{x}}^{\star}(\mathbf{ar{p}}) := rg \min_{\mathbf{ar{x}}} \ ar{f}(\mathbf{ar{x}}, \mathbf{ar{p}})$$

s.t. $\mathbf{ar{g}}(\mathbf{ar{x}}, \mathbf{ar{p}}) = \mathbf{0}$

$$r(\bar{\mathbf{z}},\bar{\mathbf{p}}) := \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}(\bar{\mathbf{x}},\bar{\boldsymbol{\lambda}},\bar{\mathbf{p}}) \\ \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \end{bmatrix} = 0$$

Implicit Function Theorem

Let \overline{z} be implicitly given by the (at least) C^1 function

 $r(\bar{\mathbf{z}}, \bar{\mathbf{p}}) = 0$ with $\nabla_{\bar{\mathbf{z}}} r(\bar{\mathbf{z}}^{\star}(\bar{\mathbf{p}}), \bar{\mathbf{p}})$ full rank.

Then \exists a \mathcal{C}^1 function $\bar{\mathbf{z}}^*(\bar{\mathbf{p}})$ such that

$$r(\mathbf{\bar{z}}^{\star}(\mathbf{\bar{p}}),\mathbf{\bar{p}})=0$$

holds in a neighbourhood of $\mathbf{\bar{p}}$. Moreover:

$$abla_{ar{\mathbf{z}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)^{ op} rac{\mathrm{d}ar{\mathbf{z}}^{\star}(ar{\mathbf{p}})}{\mathrm{d}ar{\mathbf{p}}} = -rac{\partial}{\partialar{\mathbf{p}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)$$

Is this enough?

Not all KKT points are minima!

We need:

- LICQ
- SOSC

Parametric NLP:

KKT Conditions

$$ar{\mathbf{x}}^{\star}(\mathbf{ar{p}}) := rg \min_{\mathbf{ar{x}}} \ ar{f}(\mathbf{ar{x}}, \mathbf{ar{p}})$$

s.t. $\mathbf{ar{g}}(\mathbf{ar{x}}, \mathbf{ar{p}}) = \mathbf{0}$

$$\mathbf{r}(\mathbf{\bar{z}},\mathbf{\bar{p}}) := \begin{bmatrix} \nabla_{\mathbf{\bar{x}}} \mathcal{L}(\mathbf{\bar{x}},\mathbf{\bar{\lambda}},\mathbf{\bar{p}}) \\ \mathbf{\bar{g}}(\mathbf{\bar{x}},\mathbf{\bar{p}}) \end{bmatrix} = \mathbf{0}$$

Implicit Function Theorem

Let \overline{z} be implicitly given by the (at least) C^1 function

 $r(\bar{\mathbf{z}}, \bar{\mathbf{p}}) = 0$ with $\nabla_{\bar{\mathbf{z}}} r(\bar{\mathbf{z}}^{\star}(\bar{\mathbf{p}}), \bar{\mathbf{p}})$ full rank.

Then \exists a \mathcal{C}^1 function $\bar{\mathbf{z}}^*(\bar{\mathbf{p}})$ such that

$$r(\mathbf{\bar{z}}^{\star}(\mathbf{\bar{p}}),\mathbf{\bar{p}})=0$$

holds in a neighbourhood of $\mathbf{\bar{p}}.$ Moreover:

$$abla_{ar{\mathbf{z}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)^{ op} rac{\mathrm{d}ar{\mathbf{z}}^{\star}(ar{\mathbf{p}})}{\mathrm{d}ar{\mathbf{p}}} = -rac{\partial}{\partialar{\mathbf{p}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)$$

Is this enough?

Not all KKT points are minima!

We need:

- LICQ
- SOSC

Then $\nabla_{\bar{z}}r$ invertible!

Parametric NLP:

KKT Conditions

$$\begin{split} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \ \bar{f}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \\ \text{s.t.} \ \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) = \mathbf{0} \end{split}$$

$$r(\bar{\mathbf{z}},\bar{\mathbf{p}}) := \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}(\bar{\mathbf{x}},\bar{\boldsymbol{\lambda}},\bar{\mathbf{p}}) \\ \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \end{bmatrix} = 0$$

How to Compute the Derivative

$$abla_{ar{\mathbf{z}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}), ar{\mathbf{p}}
ight)^{ op} rac{\mathbf{d}ar{\mathbf{z}}^{\star}(ar{\mathbf{p}})}{\mathbf{d}ar{\mathbf{p}}} = -rac{\partial}{\partialar{\mathbf{p}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}), ar{\mathbf{p}}
ight)$$

Is this enough?

Not all KKT points are minima!

We need:

- LICQ
- SOSC

Then $\nabla_{\bar{z}}r$ invertible!

Parametric NLP:

KKT Conditions

$$\begin{split} \mathbf{\bar{x}}^{\star}(\mathbf{\bar{p}}) &:= \arg\min_{\mathbf{\bar{x}}} \ \ \bar{f}(\mathbf{\bar{x}},\mathbf{\bar{p}}) \\ \text{s.t.} \ \ \mathbf{\bar{g}}(\mathbf{\bar{x}},\mathbf{\bar{p}}) = \mathbf{0} \end{split}$$

$$r(\bar{\mathbf{z}},\bar{\mathbf{p}}) := \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}(\bar{\mathbf{x}},\bar{\boldsymbol{\lambda}},\bar{\mathbf{p}}) \\ \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \end{bmatrix} = 0$$

How to Compute the Derivative

$$\nabla_{\bar{\mathbf{z}}} r\left(\bar{\mathbf{z}}^{\star}(\bar{\mathbf{p}}),\bar{\mathbf{p}}\right)^{\top} \frac{\mathrm{d}\bar{\mathbf{z}}^{\star}(\bar{\mathbf{p}})}{\mathrm{d}\bar{\mathbf{p}}} = -\frac{\partial}{\partial\bar{\mathbf{p}}} r\left(\bar{\mathbf{z}}^{\star}(\bar{\mathbf{p}}),\bar{\mathbf{p}}\right)$$

Is this enough?

Not all KKT points are minima!

We need:

LICQ

SOSC

Then $\nabla_{\bar{z}}r$ invertible!

$$egin{aligned} \mathcal{L}_{ar{\mathbf{p}}} &:= \mathcal{L}(ar{\mathbf{x}}^{\star}(ar{\mathbf{p}}),ar{m{\lambda}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}) \ ar{\mathbf{g}}_{ar{\mathbf{p}}} &:= ar{\mathbf{g}}(ar{\mathbf{x}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}) \end{aligned}$$

Parametric NLP:

KKT Conditions

$$ar{\mathbf{x}}^{\star}(\mathbf{ar{p}}) := \arg\min_{\mathbf{ar{x}}} \ ar{f}(\mathbf{ar{x}}, \mathbf{ar{p}})$$

s.t. $\mathbf{ar{g}}(\mathbf{ar{x}}, \mathbf{ar{p}}) = \mathbf{0}$

$$\mathbf{r}(\mathbf{\bar{z}},\mathbf{\bar{p}}) := \begin{bmatrix} \nabla_{\mathbf{\bar{x}}} \mathcal{L}(\mathbf{\bar{x}},\mathbf{\bar{\lambda}},\mathbf{\bar{p}}) \\ \mathbf{\bar{g}}(\mathbf{\bar{x}},\mathbf{\bar{p}}) \end{bmatrix} = \mathbf{0}$$

How to Compute the Derivative

$$abla_{ar{\mathbf{z}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)^{ op} rac{\mathrm{d}ar{\mathbf{z}}^{\star}(ar{\mathbf{p}})}{\mathrm{d}ar{\mathbf{p}}} = -rac{\partial}{\partialar{\mathbf{p}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)$$

Observe that

$$\nabla_{\bar{\mathbf{z}}} r \left(\bar{\mathbf{z}}^{\star}(\bar{\mathbf{p}}), \bar{\mathbf{p}} \right)^{\top} = \left[\begin{array}{cc} \nabla_{\bar{\mathbf{x}}\bar{\mathbf{x}}}^2 \mathcal{L}_{\bar{\mathbf{p}}} & \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \\ \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}}^{\top} & \mathbf{0} \end{array} \right]$$

Is this enough?

Not all KKT points are minima!

We need:

- LICQ
- SOSC

Then $\nabla_{\bar{z}}r$ invertible!

$$egin{aligned} \mathcal{L}_{ar{\mathbf{p}}} &:= \mathcal{L}(ar{\mathbf{x}}^{\star}(ar{\mathbf{p}}),ar{m{\lambda}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}) \ ar{\mathbf{g}}_{ar{\mathbf{p}}} &:= ar{\mathbf{g}}(ar{\mathbf{x}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}) \end{aligned}$$

Parametric NLP:

KKT Conditions

$$ar{\mathbf{x}}^{\star}(\mathbf{ar{p}}) := \arg\min_{\mathbf{ar{x}}} \ ar{f}(\mathbf{ar{x}}, \mathbf{ar{p}})$$

s.t. $\mathbf{ar{g}}(\mathbf{ar{x}}, \mathbf{ar{p}}) = \mathbf{0}$

$$\mathbf{r}(\mathbf{\bar{z}},\mathbf{\bar{p}}) := \begin{bmatrix} \nabla_{\mathbf{\bar{x}}} \mathcal{L}(\mathbf{\bar{x}},\mathbf{\bar{\lambda}},\mathbf{\bar{p}}) \\ \mathbf{\bar{g}}(\mathbf{\bar{x}},\mathbf{\bar{p}}) \end{bmatrix} = \mathbf{0}$$

How to Compute the Derivative

$$abla_{ar{\mathbf{z}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)^{ op} rac{\mathrm{d}ar{\mathbf{z}}^{\star}(ar{\mathbf{p}})}{\mathrm{d}ar{\mathbf{p}}} = -rac{\partial}{\partialar{\mathbf{p}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)$$

Observe that

$$\nabla_{\bar{\mathbf{z}}} r\left(\bar{\mathbf{z}}^{\star}(\bar{\mathbf{p}}), \bar{\mathbf{p}}\right)^{\top} = \begin{bmatrix} \nabla_{\bar{\mathbf{x}}\bar{\mathbf{x}}}^{2} \mathcal{L}_{\bar{\mathbf{p}}} & \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \\ \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}}^{\top} & \mathbf{0} \end{bmatrix}$$

Then

$$\begin{bmatrix} \nabla^2_{\bar{x}\bar{x}}\mathcal{L}_{\bar{p}} & \nabla_{\bar{x}}\bar{g}_{\bar{p}} \\ \nabla_{\bar{x}}\bar{g}_{\bar{p}}^\top & 0 \end{bmatrix} \frac{d\bar{z}^\star(\bar{p})}{d\bar{p}} = -\frac{\partial}{\partial\bar{p}} \begin{bmatrix} \nabla_{\bar{x}}\mathcal{L}_{\bar{p}} \\ \bar{g}_{\bar{p}} \end{bmatrix}$$

Is this enough?

Not all KKT points are minima!

We need:

LICQ

SOSC

Then $\nabla_{\bar{z}}r$ invertible!

$$egin{aligned} \mathcal{L}_{ar{\mathbf{p}}} &:= \mathcal{L}(ar{\mathbf{x}}^{\star}(ar{\mathbf{p}}),ar{m{\lambda}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}) \ ar{\mathbf{g}}_{ar{\mathbf{p}}} &:= ar{\mathbf{g}}(ar{\mathbf{x}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}) \end{aligned}$$

Parametric NLP:

KKT Conditions

$$ar{\mathbf{x}}^{\star}(\mathbf{ar{p}}) := \arg\min_{\mathbf{ar{x}}} \ ar{f}(\mathbf{ar{x}}, \mathbf{ar{p}})$$

s.t. $\mathbf{ar{g}}(\mathbf{ar{x}}, \mathbf{ar{p}}) = \mathbf{0}$

$$r(\bar{\mathbf{z}},\bar{\mathbf{p}}) := \left[\begin{array}{c} \nabla_{\bar{\mathbf{x}}} \mathcal{L}(\bar{\mathbf{x}},\bar{\boldsymbol{\lambda}},\bar{\mathbf{p}}) \\ \bar{\mathbf{g}}(\bar{\mathbf{x}},\bar{\mathbf{p}}) \end{array} \right] = 0$$

How to Compute the Derivative

$$abla_{ar{\mathbf{z}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)^{ op} rac{\mathrm{d}ar{\mathbf{z}}^{\star}(ar{\mathbf{p}})}{\mathrm{d}ar{\mathbf{p}}} = -rac{\partial}{\partialar{\mathbf{p}}} r\left(ar{\mathbf{z}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}
ight)$$

Observe that

$$\nabla_{\bar{\mathbf{z}}} r \left(\bar{\mathbf{z}}^{\star}(\bar{\mathbf{p}}), \bar{\mathbf{p}} \right)^{\top} = \begin{bmatrix} \nabla_{\bar{\mathbf{x}}\bar{\mathbf{x}}}^2 \mathcal{L}_{\bar{\mathbf{p}}} & \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \\ \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}}^{\top} & \mathbf{0} \end{bmatrix}$$

Then

$$\begin{array}{c} \nabla^2_{\bar{x}\bar{x}}\mathcal{L}_{\bar{p}} & \nabla_{\bar{x}}\bar{g}_{\bar{p}} \\ \nabla_{\bar{x}}\bar{g}_{\bar{p}}^\top & 0 \end{array} \right] \frac{d\bar{z}^\star(\bar{p})}{d\bar{p}} = -\frac{\partial}{\partial\bar{p}} \left[\begin{array}{c} \nabla_{\bar{x}}\mathcal{L}_{\bar{p}} \\ \bar{g}_{\bar{p}} \end{array} \right]$$

Compare with the (last) Newton step!

$$\begin{bmatrix} \nabla_{\bar{x}\bar{x}}^2 \mathcal{L}_{\bar{p}} & \nabla_{\bar{x}}\bar{g}_{\bar{p}} \\ \nabla_{\bar{x}}\bar{g}_{\bar{p}}^\top & 0 \end{bmatrix} \begin{bmatrix} \Delta \bar{x} \\ \bar{\lambda} \end{bmatrix} = -\begin{bmatrix} \nabla_{\bar{x}} \mathcal{L}_{\bar{p}} \\ \bar{g}_{\bar{p}} \end{bmatrix}$$

Is this enough?

Not all KKT points are minima!

We need:

- LICQ
- SOSC

Then $\nabla_{\bar{z}}r$ invertible!

$$egin{aligned} \mathcal{L}_{ar{\mathbf{p}}} &:= \mathcal{L}(ar{\mathbf{x}}^{\star}(ar{\mathbf{p}}),ar{m{\lambda}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}) \ ar{\mathbf{g}}_{ar{\mathbf{p}}} &:= ar{\mathbf{g}}(ar{\mathbf{x}}^{\star}(ar{\mathbf{p}}),ar{\mathbf{p}}) \end{aligned}$$

Parametric NLP:

Parametric Sensitivities:

$$\begin{split} \bar{\mathbf{x}}^{*}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \quad \bar{f}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) \\ \text{s.t.} \quad \bar{\mathbf{g}}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) &= 0 \end{split} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}\bar{\mathbf{x}}}^{2}\mathcal{L}_{\bar{\mathbf{p}}} \quad \nabla_{\bar{\mathbf{x}}}\bar{\mathbf{g}}_{\bar{\mathbf{p}}} \\ \nabla_{\bar{\mathbf{x}}}\bar{\mathbf{g}}_{\bar{\mathbf{p}}}^{\top} & 0 \end{bmatrix} \frac{\mathbf{d}}{\mathbf{d}\bar{\mathbf{p}}} \begin{bmatrix} \bar{\mathbf{x}}^{*}(\bar{\mathbf{p}}) \\ \bar{\lambda}^{*}(\bar{\mathbf{p}}) \end{bmatrix} = -\frac{\partial}{\partial\bar{\mathbf{p}}} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}}\mathcal{L}_{\bar{\mathbf{p}}} \\ \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \end{bmatrix} \\ f^{*}(\bar{\mathbf{p}}) &= \bar{f}(\bar{\mathbf{x}}^{*}(\bar{\mathbf{p}}), \bar{\mathbf{p}}) \end{split}$$

Parametric NLP:

Parametric Sensitivities:

$$\begin{split} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \ \bar{f}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) \\ \text{s.t.} \ \bar{\mathbf{g}}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) &= 0 \end{split} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}\bar{\mathbf{x}}}^2 \mathcal{L}_{\bar{\mathbf{p}}} & \nabla_{\bar{\mathbf{x}}}\bar{\mathbf{g}}_{\bar{\mathbf{p}}} \\ \nabla_{\bar{\mathbf{x}}}\bar{\mathbf{g}}_{\bar{\mathbf{p}}}^\top & 0 \end{bmatrix} \frac{\mathbf{d}}{\mathbf{d}\bar{\mathbf{p}}} \begin{bmatrix} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) \\ \bar{\lambda}^{\star}(\bar{\mathbf{p}}) \end{bmatrix} = -\frac{\partial}{\partial\bar{\mathbf{p}}} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}}\mathcal{L}_{\bar{\mathbf{p}}} \\ \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \end{bmatrix} \\ f^{\star}(\bar{\mathbf{p}}) &= \bar{f}(\bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}), \bar{\mathbf{p}}) \end{split}$$

Important properties:

Parametric NLP:

Parametric Sensitivities:

$$\begin{split} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \quad \bar{f}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) \\ \text{s.t.} \quad \bar{\mathbf{g}}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) &= 0 \end{split} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} \quad \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \\ \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}}^{\top} & 0 \end{bmatrix} \frac{\mathbf{d}}{\mathbf{d}\bar{\mathbf{p}}} \begin{bmatrix} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) \\ \bar{\lambda}^{\star}(\bar{\mathbf{p}}) \end{bmatrix} = -\frac{\partial}{\partial \bar{\mathbf{p}}} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} \\ \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \end{bmatrix} \\ f^{\star}(\bar{\mathbf{p}}) &= \bar{f}(\bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}), \bar{\mathbf{p}}) \end{split}$$

Important properties:

• Sensitivities are (almost) for free: KKT matrix already factorized!

Parametric NLP:

Parametric Sensitivities:

$$\begin{split} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \quad \bar{f}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) \\ \text{s.t.} \quad \bar{\mathbf{g}}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) &= 0 \end{split} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} & \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \\ \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}}^{\top} & 0 \end{bmatrix} \frac{\mathbf{d}}{\mathbf{d}\bar{\mathbf{p}}} \begin{bmatrix} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) \\ \bar{\lambda}^{\star}(\bar{\mathbf{p}}) \end{bmatrix} = -\frac{\partial}{\partial \bar{\mathbf{p}}} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} \\ \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \end{bmatrix} \\ f^{\star}(\bar{\mathbf{p}}) &= \bar{f}(\bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}), \bar{\mathbf{p}}) \end{split}$$

Important properties:

- Sensitivities are (almost) for free: KKT matrix already factorized!
- Sensitivity of the optimal value:

$$rac{\mathrm{d} f^\star(ar{\mathbf{p}})}{\mathrm{d}ar{\mathbf{p}}} = rac{\partial \mathcal{L}_{ar{\mathbf{p}}}}{\partialar{\mathbf{p}}}$$

Parametric NLP:

Parametric Sensitivities:

$$\begin{split} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \quad \bar{f}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) \\ \text{s.t.} \quad \bar{\mathbf{g}}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) &= 0 \end{split} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} & \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \\ \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}}^\top & 0 \end{bmatrix} \frac{\mathbf{d}}{\mathbf{d}\bar{\mathbf{p}}} \begin{bmatrix} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) \\ \bar{\lambda}^{\star}(\bar{\mathbf{p}}) \end{bmatrix} = -\frac{\partial}{\partial \bar{\mathbf{p}}} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} \\ \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \end{bmatrix} \\ f^{\star}(\bar{\mathbf{p}}) &= \bar{f}(\bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}), \bar{\mathbf{p}}) \end{split}$$

Important properties:

- Sensitivities are (almost) for free: KKT matrix already factorized!
- Sensitivity of the optimal value:

$$rac{\mathrm{d} f^\star(ar{\mathbf{p}})}{\mathrm{d}ar{\mathbf{p}}} = rac{\partial \mathcal{L}_{ar{\mathbf{p}}}}{\partialar{\mathbf{p}}}$$

Parametric NLP:

Parametric Sensitivities:

$$\begin{split} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \quad \bar{f}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) \\ \text{s.t.} \quad \bar{\mathbf{g}}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) &= 0 \end{split} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} \quad \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \\ \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}}^{\top} & 0 \end{bmatrix} \frac{\mathbf{d}}{\mathbf{d}\bar{\mathbf{p}}} \begin{bmatrix} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) \\ \bar{\lambda}^{\star}(\bar{\mathbf{p}}) \end{bmatrix} = -\frac{\partial}{\partial \bar{\mathbf{p}}} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} \\ \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \end{bmatrix} \\ f^{\star}(\bar{\mathbf{p}}) &= \bar{f}(\bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}), \bar{\mathbf{p}}) \end{split}$$

Important properties:

- Sensitivities are (almost) for free: KKT matrix already factorized!
- Sensitivity of the optimal value:

$$rac{{\mathrm d} f^\star(ar{\mathbf p})}{{\mathrm d}ar{\mathbf p}} = rac{\partial \mathcal{L}_{ar{\mathbf p}}}{\partialar{\mathbf p}}$$

•
$$\frac{\mathrm{d}V_{\theta}(s)}{\mathrm{d}\theta}$$
 from $\frac{\mathrm{d}f^{\star}(\bar{\mathbf{p}})}{\mathrm{d}\bar{\mathbf{p}}}$

Parametric NLP:

Parametric Sensitivities:

$$\begin{split} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \quad \bar{f}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) \\ \text{s.t.} \quad \bar{\mathbf{g}}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) &= 0 \end{split} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} \quad \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \\ \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}}^{\top} & 0 \end{bmatrix} \frac{\mathbf{d}}{\mathbf{d}\bar{\mathbf{p}}} \begin{bmatrix} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) \\ \bar{\lambda}^{\star}(\bar{\mathbf{p}}) \end{bmatrix} = -\frac{\partial}{\partial \bar{\mathbf{p}}} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} \\ \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \end{bmatrix} \\ f^{\star}(\bar{\mathbf{p}}) &= \bar{f}(\bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}), \bar{\mathbf{p}}) \end{split}$$

Important properties:

- Sensitivities are (almost) for free: KKT matrix already factorized!
- Sensitivity of the optimal value:

$$rac{{\mathrm d} f^\star(ar{\mathbf p})}{{\mathrm d}ar{\mathbf p}} = rac{\partial \mathcal{L}_{ar{\mathbf p}}}{\partialar{\mathbf p}}$$

•
$$\frac{\mathrm{d}V_{\theta}(s)}{\mathrm{d}\theta}$$
 from $\frac{\mathrm{d}f^{*}(\bar{\mathbf{p}})}{\mathrm{d}\bar{\mathbf{p}}}$
• $\frac{\mathrm{d}Q_{\theta}(s,a)}{\mathrm{d}\theta}$ from $\frac{\mathrm{d}f^{*}(\bar{\mathbf{p}})}{\mathrm{d}\bar{\mathbf{p}}}$

Parametric NLP:

Parametric Sensitivities:

$$\begin{split} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) &:= \arg\min_{\bar{\mathbf{x}}} \quad \bar{f}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) \\ \text{s.t.} \quad \bar{\mathbf{g}}(\bar{\mathbf{x}}, \bar{\mathbf{p}}) &= 0 \end{split} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} \quad \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \\ \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}}^{\top} & 0 \end{bmatrix} \frac{\mathbf{d}}{\mathbf{d}\bar{\mathbf{p}}} \begin{bmatrix} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) \\ \bar{\lambda}^{\star}(\bar{\mathbf{p}}) \end{bmatrix} = -\frac{\partial}{\partial \bar{\mathbf{p}}} \begin{bmatrix} \nabla_{\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} \\ \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \end{bmatrix} \\ f^{\star}(\bar{\mathbf{p}}) &= \bar{f}(\bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}), \bar{\mathbf{p}}) \end{split}$$

Important properties:

- Sensitivities are (almost) for free: KKT matrix already factorized!
- Sensitivity of the optimal value:

$$rac{{\mathrm d} f^\star(ar{\mathbf p})}{{\mathrm d}ar{\mathbf p}} = rac{\partial \mathcal{L}_{ar{\mathbf p}}}{\partialar{\mathbf p}}$$

•
$$\frac{\mathrm{d}V_{\theta}(s)}{\mathrm{d}\theta}$$
 from $\frac{\mathrm{d}f^{\star}(\bar{\mathbf{p}})}{\mathrm{d}\bar{\mathbf{p}}}$
• $\frac{\mathrm{d}Q_{\theta}(s,a)}{\mathrm{d}\theta}$ from $\frac{\mathrm{d}f^{\star}(\bar{\mathbf{p}})}{\mathrm{d}\bar{\mathbf{p}}}$
• $\frac{\mathrm{d}\pi_{\theta}(s)}{\mathrm{d}\theta}$ from $\frac{\mathrm{d}\bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}})}{\mathrm{d}\bar{\mathbf{p}}}$

Parametric NLP:

$$ar{\mathbf{x}}^{\star}(ar{\mathbf{p}}) := rg\min_{ar{\mathbf{x}}} \ ar{f}(ar{\mathbf{x}},ar{\mathbf{p}})$$

s.t. $ar{\mathbf{g}}(ar{\mathbf{x}},ar{\mathbf{p}}) = \mathbf{0}$

 $f^{\star}(\mathbf{\bar{p}}) = \bar{f}(\mathbf{\bar{x}}^{\star}(\mathbf{\bar{p}}), \mathbf{\bar{p}})$

$$\begin{aligned} \left\{ \begin{array}{l} \bar{\mathbf{p}} \\ \bar{\mathbf{p}} \\ \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}}^\top & \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \\ \nabla_{\bar{\mathbf{x}}} \bar{\mathbf{g}}_{\bar{\mathbf{p}}}^\top & \mathbf{0} \end{array} \right\} \frac{\mathbf{d}}{\mathbf{d}\bar{\mathbf{p}}} \left[\begin{array}{c} \bar{\mathbf{x}}^{\star}(\bar{\mathbf{p}}) \\ \bar{\lambda}^{\star}(\bar{\mathbf{p}}) \end{array} \right] = -\frac{\partial}{\partial \bar{\mathbf{p}}} \left[\begin{array}{c} \nabla_{\bar{\mathbf{x}}} \mathcal{L}_{\bar{\mathbf{p}}} \\ \bar{\mathbf{g}}_{\bar{\mathbf{p}}} \end{array} \right] \\ \bar{\mathbf{q}}, \bar{\mathbf{p}} \right] = \mathbf{0} \end{aligned}$$

Important properties:

- Sensitivities are (almost) for free: KKT matrix already factorized!
- Sensitivity of the optimal value:

$$rac{{\mathrm d} f^\star(ar{{\mathbf p}})}{{\mathrm d}ar{{\mathbf p}}} = rac{\partial \mathcal{L}_{ar{{\mathbf p}}}}{\partialar{{\mathbf p}}}$$

What does this mean for MPC?

•
$$\frac{dV_{\theta}(s)}{d\theta}$$
 from $\frac{df^{*}(\bar{p})}{d\bar{p}}$
• $\frac{dQ_{\theta}(s,a)}{d\theta}$ from $\frac{df^{*}(\bar{p})}{d\bar{p}}$
• $\frac{d\pi_{\theta}(s)}{d\theta}$ from $\frac{d\bar{x}^{*}(\bar{p})}{d\bar{p}}$

Sensitivities are cheap and easy to compute

Parametric NLP:

$$ar{\mathbf{x}}^{\star}(\mathbf{ar{p}}) := rg \min_{\mathbf{ar{x}}} \ ar{f}(\mathbf{ar{x}}, \mathbf{ar{p}})$$

s.t. $ar{\mathbf{g}}(\mathbf{ar{x}}, \mathbf{ar{p}}) = \mathbf{0}$

 $f^{\star}(\mathbf{\bar{p}}) = \overline{f}(\mathbf{\bar{x}}^{\star}(\mathbf{\bar{p}}), \mathbf{\bar{p}})$

$$\begin{bmatrix} \nabla_{\bar{x}\bar{x}}^{2}\mathcal{L}_{\bar{p}} & \nabla_{\bar{x}}\bar{g}_{\bar{p}} \\ \nabla_{\bar{x}}\bar{g}_{\bar{p}}^{\top} & 0 \end{bmatrix} \frac{\mathbf{d}}{\mathbf{d}\bar{p}} \begin{bmatrix} \bar{x}^{\star}(\bar{p}) \\ \bar{\lambda}^{\star}(\bar{p}) \end{bmatrix} = -\frac{\partial}{\partial\bar{p}} \begin{bmatrix} \nabla_{\bar{x}}\mathcal{L}_{\bar{p}} \\ \bar{g}_{\bar{p}} \end{bmatrix} = 0$$

Important properties:

- Sensitivities are (almost) for free: KKT matrix already factorized!
- Sensitivity of the optimal value:

$$rac{{\mathrm d} f^\star(ar{\mathrm p})}{{\mathrm d} ar{\mathrm p}} = rac{\partial \mathcal{L}_{ar{\mathrm p}}}{\partial ar{\mathrm p}}$$

What does this mean for MPC?

•
$$\frac{dV_{\theta}(s)}{d\theta}$$
 from $\frac{df^{\star}(\bar{p})}{d\bar{p}}$
• $\frac{dQ_{\theta}(s,a)}{d\theta}$ from $\frac{df^{\star}(\bar{p})}{d\bar{p}}$
• $\frac{d\pi_{\theta}(s)}{d\theta}$ from $\frac{d\bar{x}^{\star}(\bar{p})}{d\bar{p}}$

Sensitivities are cheap and easy to compute

What about inequality constraints?

Not a real issue in practice, see parametric NLP theory

Safe and Stabilizing RL Based on Linear Tube MPC

Tube-Based Robust MPC

$$\begin{split} \hat{Q}_{\boldsymbol{\theta}}(\mathbf{s}, \mathbf{a}) &:= \\ \min_{\mathbf{z}} \quad \sum_{k=0}^{N-1} \left\| \mathbf{x}_{k} - \mathbf{x}_{r} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ &+ \left\| \mathbf{x}_{0} \right\|_{\Lambda}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + l \\ \text{s.t.} \quad \mathbf{x}_{0} = \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \\ \mathbf{x}_{k+1} = \boldsymbol{A} \mathbf{x}_{k} + \boldsymbol{B} \mathbf{u}_{k} + \mathbf{b}, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \boldsymbol{C} \mathbf{x}_{k} + \boldsymbol{D} \mathbf{u}_{k} + \mathbf{c}_{k}(\boldsymbol{\theta}) \leq 0, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \boldsymbol{T}(\boldsymbol{\theta}) \mathbf{x}_{N} + \mathbf{t}(\boldsymbol{\theta}) \leq 0, \end{split}$$

Parameter vector: $\boldsymbol{\theta} = \{\mathbf{x_r}, \mathbf{u_r}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \textit{I}, \textit{M}\}$

Safe and Stabilizing RL Based on Linear Tube MPC

Tube-Based Robust MPC

Conditions to enforce on θ :

$$\begin{split} \hat{Q}_{\boldsymbol{\theta}}(\mathbf{s}, \mathbf{a}) &:= \\ \min_{\mathbf{z}} \quad \sum_{k=0}^{N-1} \left\| \begin{aligned} \mathbf{x}_{k} &- \mathbf{x}_{r} \\ \mathbf{u}_{k} &- \mathbf{u}_{r} \end{aligned} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ &+ \left\| \mathbf{x}_{0} \right\|_{\Lambda}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + I \\ \text{s.t.} \quad \mathbf{x}_{0} &= \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \\ \mathbf{x}_{k+1} &= \mathbf{A} \mathbf{x}_{k} + \mathbf{B} \mathbf{u}_{k} + \mathbf{b}, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \mathbf{C} \mathbf{x}_{k} + \mathbf{D} \mathbf{u}_{k} + \mathbf{c}_{k}(\boldsymbol{\theta}) \leq 0, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \mathbf{T}(\boldsymbol{\theta}) \mathbf{x}_{N} + \mathbf{t}(\boldsymbol{\theta}) \leq 0, \end{split}$$

Parameter vector: $\boldsymbol{\theta} = \{\mathbf{x_r}, \mathbf{u_r}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \textit{I}, \textit{M}\}$

Safe and Stabilizing RL Based on Linear Tube MPC

Tube-Based Robust MPC

$$\begin{split} \hat{Q}_{\boldsymbol{\theta}}(\mathbf{s}, \mathbf{a}) &:= \\ \min_{\mathbf{z}} \quad \sum_{k=0}^{N-1} \left\| \begin{aligned} \mathbf{x}_{k} &- \mathbf{x}_{r} \\ \mathbf{u}_{k} &- \mathbf{u}_{r} \end{aligned} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ &+ \left\| \mathbf{x}_{0} \right\|_{\Lambda}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + l \\ \text{s.t.} \quad \mathbf{x}_{0} &= \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \\ \mathbf{x}_{k+1} &= \mathbf{A} \mathbf{x}_{k} + \mathbf{B} \mathbf{u}_{k} + \mathbf{b}, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \mathbf{C} \mathbf{x}_{k} + \mathbf{D} \mathbf{u}_{k} + \mathbf{c}_{k}(\boldsymbol{\theta}) \leq 0, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \mathbf{T}(\boldsymbol{\theta}) \mathbf{x}_{N} + \mathbf{t}(\boldsymbol{\theta}) \leq 0, \end{split}$$

Parameter vector: $\boldsymbol{\theta} = \{\mathbf{x_r}, \mathbf{u_r}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \boldsymbol{I}, \boldsymbol{M}\}$

Conditions to enforce on θ :

Steady state

$$x_{\rm r} = \boldsymbol{A} x_{\rm r} + \boldsymbol{B} \mathbf{u}_{\rm r}$$
Tube-Based Robust MPC

$$\begin{split} \hat{Q}_{\boldsymbol{\theta}}(\mathbf{s}, \mathbf{a}) &:= \\ \min_{\mathbf{z}} \quad \sum_{k=0}^{N-1} \left\| \begin{aligned} \mathbf{x}_{k} &- \mathbf{x}_{r} \\ \mathbf{u}_{k} &- \mathbf{u}_{r} \end{aligned} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ &+ \left\| \mathbf{x}_{0} \right\|_{\boldsymbol{\lambda}}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + l \\ \text{s.t.} \quad \mathbf{x}_{0} &= \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \\ \mathbf{x}_{k+1} &= \boldsymbol{A} \mathbf{x}_{k} + \boldsymbol{B} \mathbf{u}_{k} + \mathbf{b}, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \boldsymbol{C} \mathbf{x}_{k} + \boldsymbol{D} \mathbf{u}_{k} + \mathbf{c}_{k}(\boldsymbol{\theta}) \leq 0, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \boldsymbol{T}(\boldsymbol{\theta}) \mathbf{x}_{N} + \mathbf{t}(\boldsymbol{\theta}) \leq 0, \end{split}$$

Parameter vector: $\boldsymbol{\theta} = \{\mathbf{x_r}, \mathbf{u_r}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \boldsymbol{l}, \boldsymbol{M}\}$

Conditions to enforce on θ :

• Steady state

$$x_{\rm r} = \boldsymbol{\textit{A}} x_{\rm r} + \boldsymbol{\textit{B}} u_{\rm r}$$

$$\boldsymbol{H} = \left[\begin{array}{cc} \boldsymbol{Q} & \boldsymbol{S} \\ \boldsymbol{S}^{\top} & \boldsymbol{R} \end{array} \right] \succ \boldsymbol{0}$$

Tube-Based Robust MPC

Ôө

$$\begin{split} \mathbf{(s, a)} &:= \\ \min_{\mathbf{z}} \quad \sum_{k=0}^{N-1} \left\| \mathbf{x}_{k} - \mathbf{x}_{r} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ \quad + \left\| \mathbf{x}_{0} \right\|_{\boldsymbol{\lambda}}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + l \\ \text{s.t.} \quad \mathbf{x}_{0} = \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \\ \mathbf{x}_{k+1} = \mathbf{A} \mathbf{x}_{k} + \mathbf{B} \mathbf{u}_{k} + \mathbf{b}, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \mathbf{C} \mathbf{x}_{k} + \mathbf{D} \mathbf{u}_{k} + \mathbf{c}_{k}(\boldsymbol{\theta}) \leq 0, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \mathbf{T}(\boldsymbol{\theta}) \mathbf{x}_{N} + \mathbf{t}(\boldsymbol{\theta}) \leq 0, \end{split}$$

Parameter vector: $\boldsymbol{\theta} = \{\mathbf{x_r}, \mathbf{u_r}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \boldsymbol{l}, \boldsymbol{M}\}$

Conditions to enforce on θ :

• Steady state

$$x_{\rm r} = \boldsymbol{A} x_{\rm r} + \boldsymbol{B} \mathbf{u}_{\rm r}$$

Positive definiteness

$$\boldsymbol{H} = \left[\begin{array}{cc} \boldsymbol{Q} & \boldsymbol{S} \\ \boldsymbol{S}^{\top} & \boldsymbol{R} \end{array} \right] \succ \boldsymbol{0}$$

• Consistent uncertainty set $\textit{M}(s_{i+1} - (\textit{A}s_i + \textit{B}a_i + b)) \leq m$

Tube-Based Robust MPC

Âθ

$$\begin{split} \mathbf{(s, a)} &:= \\ \min_{\mathbf{z}} \quad \sum_{k=0}^{N-1} \left\| \mathbf{x}_{k} - \mathbf{x}_{r} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ \quad + \left\| \mathbf{x}_{0} \right\|_{\boldsymbol{\Lambda}}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + l \\ \text{s.t.} \quad \mathbf{x}_{0} = \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \\ \mathbf{x}_{k+1} = \mathbf{A} \mathbf{x}_{k} + \mathbf{B} \mathbf{u}_{k} + \mathbf{b}, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \mathbf{C} \mathbf{x}_{k} + \mathbf{D} \mathbf{u}_{k} + \mathbf{c}_{k}(\boldsymbol{\theta}) \leq 0, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \mathbf{T}(\boldsymbol{\theta}) \mathbf{x}_{N} + \mathbf{t}(\boldsymbol{\theta}) \leq 0, \end{split}$$

Parameter vector: $\boldsymbol{\theta} = \{\mathbf{x_r}, \mathbf{u_r}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, l, M\}$

Conditions to enforce on θ :

• Steady state

$$x_{\rm r} = \boldsymbol{A} x_{\rm r} + \boldsymbol{B} \mathbf{u}_{\rm r}$$

$$\boldsymbol{H} = \left[\begin{array}{cc} \boldsymbol{Q} & \boldsymbol{S} \\ \boldsymbol{S}^{\top} & \boldsymbol{R} \end{array} \right] \succ \boldsymbol{0}$$

- Consistent uncertainty set $\textbf{\textit{M}}(s_{i+1} (\textbf{\textit{A}}s_i + \textbf{\textit{B}}a_i + b)) \leq m$
- Terminal set includes the reference

$$m{ au}(m{ heta}) x_r \leq t(m{ heta})$$

Tube-Based Robust MPC

$$\begin{split} \mathbf{(s, a)} &:= \\ \min_{\mathbf{z}} \quad \sum_{k=0}^{N-1} \left\| \mathbf{x}_{k} - \mathbf{x}_{r} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ \quad + \left\| \mathbf{x}_{0} \right\|_{\boldsymbol{\lambda}}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + l \\ \text{s.t.} \quad \mathbf{x}_{0} = \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \\ \mathbf{x}_{k+1} = \mathbf{A} \mathbf{x}_{k} + \mathbf{B} \mathbf{u}_{k} + \mathbf{b}, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \mathbf{C} \mathbf{x}_{k} + \mathbf{D} \mathbf{u}_{k} + \mathbf{c}_{k}(\boldsymbol{\theta}) \leq 0, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \mathbf{T}(\boldsymbol{\theta}) \mathbf{x}_{N} + \mathbf{t}(\boldsymbol{\theta}) \leq 0, \end{split}$$

Parameter vector: $\boldsymbol{\theta} = \{\mathbf{x_r}, \mathbf{u_r}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \boldsymbol{l}, \boldsymbol{M}\}$

Moreover:

Ĉθ

• Riccati terminal cost and control law

$$\begin{split} & \mathcal{K}(\theta) = (\mathcal{R} + \mathcal{B}^{\top} \mathcal{P}(\theta) \mathcal{B})^{-1} (\mathcal{S}^{\top} + \mathcal{B}^{\top} \mathcal{P}(\theta) \mathcal{A}) \\ & \mathcal{P}(\theta) = \mathcal{Q} + \mathcal{A}^{\top} \mathcal{P}(\theta) \mathcal{A} - (\mathcal{S} + \mathcal{A}^{\top} \mathcal{P}(\theta) \mathcal{B}) \mathcal{K}(\theta) \end{split}$$

Conditions to enforce on θ :

Steady state

$$x_{\rm r} = \boldsymbol{A} x_{\rm r} + \boldsymbol{B} \mathbf{u}_{\rm r}$$

$$\boldsymbol{H} = \left[\begin{array}{cc} \boldsymbol{Q} & \boldsymbol{S} \\ \boldsymbol{S}^{\top} & \boldsymbol{R} \end{array} \right] \succ \boldsymbol{0}$$

- Consistent uncertainty set $\textbf{\textit{M}}(s_{i+1} (\textbf{\textit{A}}s_i + \textbf{\textit{B}}a_i + b)) \leq m$
- Terminal set includes the reference

$$m{ au}(m{ heta}) x_r \leq t(m{ heta})$$

Tube-Based Robust MPC

$$\begin{aligned} \mathbf{(s, a)} &:= \\ \min_{\mathbf{z}} \quad \sum_{k=0}^{N-1} \left\| \mathbf{x}_{k} - \mathbf{x}_{r} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ &+ \left\| \mathbf{x}_{0} \right\|_{\boldsymbol{\lambda}}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + l \\ \text{s.t.} \quad \mathbf{x}_{0} = \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \\ \mathbf{x}_{k+1} = \boldsymbol{A} \mathbf{x}_{k} + \boldsymbol{B} \mathbf{u}_{k} + \mathbf{b}, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \boldsymbol{C} \mathbf{x}_{k} + \boldsymbol{D} \mathbf{u}_{k} + \mathbf{c}_{k}(\boldsymbol{\theta}) \leq 0, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \boldsymbol{T}(\boldsymbol{\theta}) \mathbf{x}_{N} + \mathbf{t}(\boldsymbol{\theta}) \leq 0, \end{aligned}$$

Parameter vector: $\boldsymbol{\theta} = \{\mathbf{x_r}, \mathbf{u_r}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \textit{I}, \textit{M}\}$

Moreover:

Ĉθ

• Riccati terminal cost and control law

$$\begin{split} \boldsymbol{\mathcal{K}}(\boldsymbol{\theta}) &= (\boldsymbol{R} + \boldsymbol{B}^{\top} \boldsymbol{\mathcal{P}}(\boldsymbol{\theta}) \boldsymbol{B})^{-1} (\boldsymbol{S}^{\top} + \boldsymbol{B}^{\top} \boldsymbol{\mathcal{P}}(\boldsymbol{\theta}) \boldsymbol{A}) \\ \boldsymbol{\mathcal{P}}(\boldsymbol{\theta}) &= \boldsymbol{Q} + \boldsymbol{A}^{\top} \boldsymbol{\mathcal{P}}(\boldsymbol{\theta}) \boldsymbol{A} - (\boldsymbol{S} + \boldsymbol{A}^{\top} \boldsymbol{\mathcal{P}}(\boldsymbol{\theta}) \boldsymbol{B}) \boldsymbol{\mathcal{K}}(\boldsymbol{\theta}) \end{split}$$

• Constraint tightening; RPI terminal set

$$\mathbf{f}(oldsymbol{ heta}) = (\mathbf{c}_k(oldsymbol{ heta}), oldsymbol{ heta}(oldsymbol{ heta}), \mathbf{t}(oldsymbol{ heta}))$$

M. Zanon (IMT Lucca)

Conditions to enforce on θ :

Steady state

$$x_{\rm r} = \boldsymbol{A} x_{\rm r} + \boldsymbol{B} \mathbf{u}_{\rm r}$$

$$\boldsymbol{H} = \left[\begin{array}{cc} \boldsymbol{Q} & \boldsymbol{S} \\ \boldsymbol{S}^{\top} & \boldsymbol{R} \end{array} \right] \succ \boldsymbol{0}$$

- Consistent uncertainty set $\textbf{\textit{M}}(s_{i+1} (\textbf{\textit{A}}s_i + \textbf{\textit{B}}a_i + b)) \leq m$
- Terminal set includes the reference

$$m{ au}(m{ heta}) x_r \leq t(m{ heta})$$

Tube-Based Robust MPC

RL problem mi

θ

$$\begin{split} \hat{Q}_{\boldsymbol{\theta}}(\mathbf{s}, \mathbf{a}) &:= \\ \min_{\mathbf{z}} \quad \sum_{k=0}^{N-1} \left\| \begin{aligned} \mathbf{x}_{k} &- \mathbf{x}_{r} \\ \mathbf{u}_{k} &- \mathbf{u}_{r} \end{aligned} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ &+ \left\| \mathbf{x}_{0} \right\|_{\Lambda}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + \boldsymbol{I} \\ \text{s.t.} \quad \mathbf{x}_{0} &= \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \\ \mathbf{x}_{k+1} &= \mathbf{A}\mathbf{x}_{k} + \mathbf{B}\mathbf{u}_{k} + \mathbf{b}, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \mathbf{C}\mathbf{x}_{k} + \mathbf{D}\mathbf{u}_{k} + \mathbf{c}_{k}(\boldsymbol{\theta}) \leq 0, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \mathbf{T}(\boldsymbol{\theta})\mathbf{x}_{N} + \mathbf{t}(\boldsymbol{\theta}) \leq 0, \end{split}$$

Parameter vector: $\boldsymbol{\theta} = \{\mathbf{x}_{\mathbf{r}}, \mathbf{u}_{\mathbf{r}}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \boldsymbol{I}, \boldsymbol{M}\}$

Moreover:

r

Riccati terminal cost and control law

$$\begin{split} & \boldsymbol{\mathcal{K}}(\boldsymbol{\theta}) = (\boldsymbol{R} + \boldsymbol{B}^{\top} \boldsymbol{\mathcal{P}}(\boldsymbol{\theta}) \boldsymbol{B})^{-1} (\boldsymbol{S}^{\top} + \boldsymbol{B}^{\top} \boldsymbol{\mathcal{P}}(\boldsymbol{\theta}) \boldsymbol{A}) \\ & \boldsymbol{\mathcal{P}}(\boldsymbol{\theta}) = \boldsymbol{Q} + \boldsymbol{A}^{\top} \boldsymbol{\mathcal{P}}(\boldsymbol{\theta}) \boldsymbol{A} - (\boldsymbol{S} + \boldsymbol{A}^{\top} \boldsymbol{\mathcal{P}}(\boldsymbol{\theta}) \boldsymbol{B}) \boldsymbol{\mathcal{K}}(\boldsymbol{\theta}) \end{split}$$

Constraint tightening; RPI terminal set

$$\mathbf{f}(oldsymbol{ heta}) = (\mathbf{c}_k(oldsymbol{ heta}), oldsymbol{ heta}(oldsymbol{ heta}), \mathbf{t}(oldsymbol{ heta}))$$

$$\begin{split} \min_{\boldsymbol{\theta}} & \psi(\boldsymbol{\theta}) \\ \text{s.t.} \quad \mathbf{x}_{\mathrm{r}} = \mathbf{A}\mathbf{x}_{\mathrm{r}} + \mathbf{B}\mathbf{u}_{\mathrm{r}} \\ & \mathbf{H} = \left[\begin{array}{c} \mathbf{Q} & \mathbf{S} \\ \mathbf{S}^{\top} & \mathbf{R} \end{array} \right] \succ \mathbf{0} \\ & \mathbf{M}(\mathbf{s}_{i+1} - (\mathbf{A}\mathbf{s}_i + \mathbf{B}\mathbf{a}_i + \mathbf{b})) \leq \mathbf{m} \\ & \mathbf{T}(\boldsymbol{\theta})\mathbf{x}_{\mathrm{r}} \leq \mathbf{t}(\boldsymbol{\theta}) \end{split}$$

Tube-Based Robust MPC

$$\begin{split} \hat{Q}_{\boldsymbol{\theta}}(\mathbf{s}, \mathbf{a}) &:= \\ \min_{\mathbf{z}} \quad \sum_{k=0}^{N-1} \left\| \mathbf{x}_{k} - \mathbf{x}_{r} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ &+ \left\| \mathbf{x}_{0} \right\|_{\Lambda}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + l \\ \text{s.t.} \quad \mathbf{x}_{0} = \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \\ \mathbf{x}_{k+1} = \boldsymbol{A} \mathbf{x}_{k} + \boldsymbol{B} \mathbf{u}_{k} + \mathbf{b}, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \boldsymbol{C} \mathbf{x}_{k} + \boldsymbol{D} \mathbf{u}_{k} + \mathbf{c}_{k}(\boldsymbol{\theta}) \leq 0, \qquad k \in \mathbb{I}_{0}^{N-1}, \\ \boldsymbol{T}(\boldsymbol{\theta}) \mathbf{x}_{N} + \mathbf{t}(\boldsymbol{\theta}) \leq 0, \end{split}$$

Parameter vector: $\boldsymbol{\theta} = \{\mathbf{x}_{\mathbf{r}}, \mathbf{u}_{\mathbf{r}}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \boldsymbol{I}, \boldsymbol{M}\}$

Moreover:

Riccati terminal cost and control law

$$\begin{split} \boldsymbol{K}(\boldsymbol{\theta}) &= (\boldsymbol{R} + \boldsymbol{B}^{\top} \boldsymbol{P}(\boldsymbol{\theta}) \boldsymbol{B})^{-1} (\boldsymbol{S}^{\top} + \boldsymbol{B}^{\top} \boldsymbol{P}(\boldsymbol{\theta}) \boldsymbol{A}) \\ \boldsymbol{P}(\boldsymbol{\theta}) &= \boldsymbol{Q} + \boldsymbol{A}^{\top} \boldsymbol{P}(\boldsymbol{\theta}) \boldsymbol{A} - (\boldsymbol{S} + \boldsymbol{A}^{\top} \boldsymbol{P}(\boldsymbol{\theta}) \boldsymbol{B}) \boldsymbol{K}(\boldsymbol{\theta}) \end{split}$$

Constraint tightening; RPI terminal set

$$\mathbf{f}(oldsymbol{ heta}) = (\mathbf{c}_k(oldsymbol{ heta}), oldsymbol{ heta}(oldsymbol{ heta}), \mathbf{t}(oldsymbol{ heta}))$$

RL problem .

 \mathbf{S}

$$\begin{split} \min_{\boldsymbol{\theta}} & \psi(\boldsymbol{\theta}) \\ \text{s.t.} \quad \mathbf{x}_{\mathrm{r}} = \boldsymbol{A}\mathbf{x}_{\mathrm{r}} + \boldsymbol{B}\mathbf{u}_{\mathrm{r}} \\ & \boldsymbol{H} = \left[\begin{array}{c} \boldsymbol{Q} & \boldsymbol{S} \\ \boldsymbol{S}^{\top} & \boldsymbol{R} \end{array} \right] \succ \mathbf{0} \\ & \boldsymbol{M}(\mathbf{s}_{i+1} - (\boldsymbol{A}\mathbf{s}_i + \boldsymbol{B}\mathbf{a}_i + \mathbf{b})) \leq \mathbf{m} \\ & \boldsymbol{T}(\boldsymbol{\theta})\mathbf{x}_{\mathrm{r}} \leq \mathbf{t}(\boldsymbol{\theta}) \end{split}$$

Derivative computation:

• apply chain rule:

$$\frac{\mathrm{d}\psi(\boldsymbol{\theta})}{\mathrm{d}\boldsymbol{\theta}} = \frac{\partial\psi(\boldsymbol{\theta})}{\partial\boldsymbol{\theta}} + \frac{\partial\psi(\boldsymbol{\theta})}{\partial\mathrm{f}(\boldsymbol{\theta})}\frac{\mathrm{d}\mathrm{f}(\boldsymbol{\theta})}{\mathrm{d}\boldsymbol{\theta}}$$

can be cumbersome but it's not rocket science

Tube MPC

$$\begin{split} \min_{\mathbf{z}} \quad & \sum_{k=0}^{N-1} \left\| \begin{aligned} \mathbf{x}_{k} &- \mathbf{x}_{r} \\ \mathbf{u}_{k} &- \mathbf{u}_{r} \end{aligned} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ & + \left\| \mathbf{x}_{0} \right\|_{\boldsymbol{\Lambda}}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + I \\ \text{s.t.} \quad & \mathbf{x}_{0} = \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \end{split}$$

$$\begin{split} \mathbf{x}_{k+1} &= \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \mathbf{b}, \qquad k \in \mathbb{I}_0^{N-1}, \\ \mathbf{C}\mathbf{x}_k &= \mathbf{D}\mathbf{u}_k + \mathbf{c}_k(\boldsymbol{\theta}) \leq 0, \qquad k \in \mathbb{I}_0^{N-1}, \\ \mathbf{T}(\boldsymbol{\theta})\mathbf{x}_N + \mathbf{t}(\boldsymbol{\theta}) \leq 0, \end{split}$$

Double integrator

$$\begin{split} \mathbf{s}_+ &= \left[\begin{array}{cc} 1 & 0.1 \\ 0 & 1 \end{array} \right] \mathbf{s} + \left[\begin{array}{cc} 0.05 \\ 0.1 \end{array} \right] \mathbf{a} + \mathbf{w} \\ \mathbf{s} \in \left[-1,1\right]^2 \qquad \mathbf{a} \in \left[-1,1\right] \end{split}$$

- ${\scriptstyle \bullet }$ Unknown noise set ${\mathbb W}$
- RL parameter: $\boldsymbol{ heta} = \{\mathbf{x_r}, \mathbf{u_r}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \textit{I}, \textit{M}\}$
- Reward

$$-R(s,a) = (p-3)^2 + 0.01v^2 + 0.01a^2$$

Tube MPC

$$\begin{split} \min_{\mathbf{z}} \quad & \sum_{k=0}^{N-1} \left\| \begin{aligned} \mathbf{x}_k &- \mathbf{x}_r \\ \mathbf{u}_k &- \mathbf{u}_r \end{aligned} \right\|_{\boldsymbol{H}}^2 + \left\| \mathbf{x}_N - \mathbf{x}_r \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^2 \\ & + \left\| \mathbf{x}_0 \right\|_{\boldsymbol{\Lambda}}^2 + \boldsymbol{\lambda}^\top \mathbf{x}_0 + \boldsymbol{l} \\ \text{s.t.} \quad & \mathbf{x}_0 = \mathbf{s}, \qquad \mathbf{u}_0 = \mathbf{a}, \end{split}$$

$$\begin{split} \mathbf{x}_{k+1} &= \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \mathbf{b}, \qquad k \in \mathbb{I}_0^{N-1}, \\ \mathbf{C}\mathbf{x}_k &= \mathbf{D}\mathbf{u}_k + \mathbf{c}_k(\boldsymbol{\theta}) \leq 0, \qquad k \in \mathbb{I}_0^{N-1}, \\ \mathbf{T}(\boldsymbol{\theta})\mathbf{x}_N + \mathbf{t}(\boldsymbol{\theta}) \leq 0, \end{split}$$

Double integrator

$$\begin{split} \mathbf{s}_{+} = \left[\begin{array}{cc} 1 & 0.1 \\ 0 & 1 \end{array} \right] \mathbf{s} + \left[\begin{array}{cc} 0.05 \\ 0.1 \end{array} \right] \mathbf{a} + \mathbf{w} \\ \mathbf{s} \in \left[-1,1\right]^2 \qquad \mathbf{a} \in \left[-1,1\right] \end{split}$$

- ${\scriptstyle \bullet}$ Unknown noise set ${\mathbb W}$
- RL parameter: $\boldsymbol{\theta} = \{\mathbf{x_r}, \mathbf{u_r}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \boldsymbol{I}, \boldsymbol{M}\}$
- Reward

$$-R(s,a) = (p-3)^2 + 0.01v^2 + 0.01a^2$$

Tube MPC

$$\begin{split} \min_{\mathbf{z}} \quad & \sum_{k=0}^{N-1} \left\| \begin{aligned} \mathbf{x}_{k} &- \mathbf{x}_{r} \\ \mathbf{u}_{k} &- \mathbf{u}_{r} \end{aligned} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ & + \left\| \mathbf{x}_{0} \right\|_{\boldsymbol{\Lambda}}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + I \\ \text{s.t.} \quad & \mathbf{x}_{0} = \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \end{split}$$

$$\begin{split} \mathbf{x}_{k+1} &= \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \mathbf{b}, \qquad k \in \mathbb{I}_0^{N-1}, \\ \mathbf{C}\mathbf{x}_k &= \mathbf{D}\mathbf{u}_k + \mathbf{c}_k(\boldsymbol{\theta}) \leq \mathbf{0}, \qquad k \in \mathbb{I}_0^{N-1}, \\ \mathbf{T}(\boldsymbol{\theta})\mathbf{x}_N + \mathbf{t}(\boldsymbol{\theta}) \leq \mathbf{0}, \end{split}$$

$\begin{array}{c} 1 \\ 0.5 \\ -0.5 \\ -1 \\ -1 \\ -0.5 \\ p \\ \end{array}$

Double integrator

$$\begin{split} \mathbf{s}_{+} &= \left[\begin{array}{cc} 1 & 0.1 \\ 0 & 1 \end{array} \right] \mathbf{s} + \left[\begin{array}{cc} 0.05 \\ 0.1 \end{array} \right] \mathbf{a} + \mathbf{w} \\ \mathbf{s} &\in \left[-1,1 \right]^2 \qquad \mathbf{a} \in \left[-1,1 \right] \end{split}$$

- ${\scriptstyle \bullet}$ Unknown noise set ${\mathbb W}$
- RL parameter: $\boldsymbol{\theta} = \{\mathbf{x_r}, \mathbf{u_r}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \boldsymbol{I}, \boldsymbol{M}\}$
- Reward

$$-R(s,a) = (p-3)^2 + 0.01v^2 + 0.01a^2$$

Tube MPC

$$\begin{split} \min_{\mathbf{z}} \quad & \sum_{k=0}^{N-1} \left\| \begin{aligned} \mathbf{x}_{k} &- \mathbf{x}_{r} \\ \mathbf{u}_{k} &- \mathbf{u}_{r} \end{aligned} \right\|_{\boldsymbol{H}}^{2} + \left\| \mathbf{x}_{N} - \mathbf{x}_{r} \right\|_{\boldsymbol{P}(\boldsymbol{\theta})}^{2} \\ & + \left\| \mathbf{x}_{0} \right\|_{\boldsymbol{\Lambda}}^{2} + \boldsymbol{\lambda}^{\top} \mathbf{x}_{0} + I \\ \text{s.t.} \quad & \mathbf{x}_{0} = \mathbf{s}, \qquad \mathbf{u}_{0} = \mathbf{a}, \end{split}$$

$$\begin{split} \mathbf{x}_{k+1} &= \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \mathbf{b}, \qquad k \in \mathbb{I}_0^{N-1}, \\ \mathbf{C}\mathbf{x}_k &= \mathbf{D}\mathbf{u}_k + \mathbf{c}_k(\boldsymbol{\theta}) \leq \mathbf{0}, \qquad k \in \mathbb{I}_0^{N-1}, \\ \mathbf{T}(\boldsymbol{\theta})\mathbf{x}_N + \mathbf{t}(\boldsymbol{\theta}) \leq \mathbf{0}, \end{split}$$

Double integrator

$$\begin{split} \mathbf{s}_{+} &= \left[\begin{array}{cc} 1 & 0.1 \\ 0 & 1 \end{array} \right] \mathbf{s} + \left[\begin{array}{cc} 0.05 \\ 0.1 \end{array} \right] \mathbf{a} + \mathbf{w} \\ \mathbf{s} &\in [-1,1]^2 \qquad \mathbf{a} \in [-1,1] \end{split}$$

- ${\scriptstyle \bullet}$ Unknown noise set ${\mathbb W}$
- RL parameter: $\boldsymbol{\theta} = \{\mathbf{x_r}, \mathbf{u_r}, \boldsymbol{H}, \boldsymbol{\Lambda}, \boldsymbol{\lambda}, \boldsymbol{l}, \boldsymbol{M}\}$
- Reward

$$-R(s,a) = (p-3)^2 + 0.01v^2 + 0.01a^2$$

M. Zanon (IMT Lucca)

- MPC can be differentiated and that is
 - cheap
 - useful

- MPC can be differentiated and that is
 - cheap
 - useful
- Differentiable MPC can be used as a function approximator within RL
 - RL can tune MPC to get the best possible performance
 - proxy to introduce safety and stability guarantees in RL
 - I have a talk on that on WeB17.2: Reinforcement Learning with Guarantees (A Tutorial on Policy Learning Methods for Advanced Controller Representations)

- MPC can be differentiated and that is
 - cheap
 - useful
- Differentiable MPC can be used as a function approximator within RL
 - RL can tune MPC to get the best possible performance
 - proxy to introduce safety and stability guarantees in RL
 - I have a talk on that on WeB17.2: Reinforcement Learning with Guarantees (A Tutorial on Policy Learning Methods for Advanced Controller Representations)
- Differentiable MPC can also be exploited to build distributed algorithms, e.g.:

Joint work with R. Hult, S. Gros, P. Falcone

M. Zanon	(IMT Lucca)
----------	-------------

- MPC can be differentiated and that is
 - cheap
 - useful
- Differentiable MPC can be used as a function approximator within RL
 - RL can tune MPC to get the best possible performance
 - proxy to introduce safety and stability guarantees in RL
 - I have a talk on that on WeB17.2: Reinforcement Learning with Guarantees (A Tutorial on Policy Learning Methods for Advanced Controller Representations)
- Differentiable MPC can also be exploited to build distributed algorithms, e.g.:

Joint work with R. Hult, S. Gros, P. Falcone

• Parametric sensitivities are also helpful to tune tracink MPC to behave similarly to economic MPC

Our work on the topic

- 1. Stability-Constrained Markov Decision Processes Using MPC, M. Zanon, M. Palladino, S. Gros, Automatica 2022
- 2. Safe Reinforcement Learning with Stability & Safety Guarantees Using Robust MPCLearning for MPC with Stability & Safety Guarantees, S. Gros, M. Zanon, Automatica 2022
- 3. Bias Correction in Reinforcement Learning via the Deterministic Policy Gradient Method for MPC-Based Policies, S. Gros, M. Zanon, ACC, 2021
- 4. Reinforcement Learning based on MPC and the Stochastic Policy Gradient Method, S. Gros, M. Zanon, ACC, 2021
- 5. Safe Reinforcement Learning Using Robust MPC, M. Zanon, S. Gros, IEEE TAC, 2021
- Safe Reinforcement Learning via Projection on a Safe Set: How to Achieve Optimality? S. Gros, M. Zanon, A. Bemporad, IFAC World Congress 2020
- 7. Reinforcement Learning for Mixed-Integer Problems Based on MPC, S. Gros, M. Zanon, IFAC World Congress 2020
- 8. Reinforcement Learning Based on Real-Time Iteration NMPC, M. Zanon, V. Kungurstev, S. Gros, IFAC World Congress 2020
- 9. Data-driven Economic NMPC using Reinforcement Learning, S. Gros, M. Zanon, IEEE TAC, 2020
- 10. Practical Reinforcement Learning of Stabilizing Economic MPC, M. Zanon, S. Gros, A. Bemporad, European Control Conference 2019