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Synchronization in networks of FitzHugh-Nagumo
(FN) oscillators coupled via gap junctions

¥ Semi-passivddyarantees bounded solutions

¥ Sufficient conditiar complete synchronization

¥ Removal of constraints ograph structure

¥ Variation inexternal inputs

Motivation and Problem Statement

Studying the dynamics of an ensemble of

model neurons gives us insight into the

behavior of biological neuronal networks

¥ Connections between neuronal spiking a
mesoscale properties, e.q. LFP.

¥ Function In certain brain systems (e.g. be
ganglia) are closely related to
synchronization; external influence such :

o DBS can alter synchronization properties
¥ Desynchronization especially applicabl

In clinical cases

¥ Preservation of graph characteristics

across length scales
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Further Considerations:
Graph Structure and External Inputs

FitzHugh-Nagumo Equations

-~

¥ Reduced model of actio
potential for theith
neuron

¥ Ui excitatory (fast)

¥ Z; Inhibitory (slow)

¥ Linear electrical couplinu,;
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A system is strictly semi- passwe in a region D if there exists a

function V such that V < y ' u — H(x), where H(x) > Ooutside a T\

ball of radius p.2

Sufficient Conditions for Synchronization

Synchronized States
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Semi-passivity gives us bounded solutl y| < (303 |z] < % %%@éﬁ
Choose Lyapunov function V = % Z (y1 —vi)® + (21 — 2)°]
1=1
For sufficiently large coupling, the (p—1)2 1 (31)*/3
completely synchronized state Is stable T kb kT 3k

Rewrite states as average and
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Transformed dynamics: k
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A singular perturbation forky > 1 i=1
results in a single FN oscillator b=z 32 = g~ b
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Arbitrary graph:
¥ Given sufficient condition on second smallest eigenvalue of
coupling matrix
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¥ Stable complete synchronization state when

Loy (31)?/3
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Differing inputs:

¥ Cluster synchronization arises in heterogeneous systems.
¥ Stability argument Is identical to earlier cases: can use a

superposition of Lyapunov functions
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¥ Complete graph: clusters form based directly on inputs
¥ We find a sufficient bound for independent synchronizatio
of all clusters
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¥ Other graph structures - nontrivial to determine clusters
¥ High coupling limit - again approaches a single FN oscillato
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Conclusions |

¥ We find an explicit bound on coupling that guarantees
complete synchronization in networks of homogeneous FI
osclillators
¥ Singular perturbation reduces to single FN oscillator
¥ In external input case, we cannot get complete
synchronization
¥ New synchronization state Is possible: cluster
synchronization
¥ Proved stability of cluster synchronization in complete
graph when coupling Is above a threshold
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