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Synchronization in networks of FitzHugh-Nagumo
(FN) oscillators coupled via gap junctions

* Semi-passivity guarantees bounded solutions

* Sufficient condition for complete synchronization

* Removal of constraints on graph structure

* Variation in external inputs
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Motivation and Problem Statement

Studying the dynamics of an ensemble of

model neurons gives us insight into the

behavior of biological neuronal networks

* Connections between neuronal spiking and
mesoscale properties, e.g. LFP. |

* Function in certain brain systems (e.g. basal
ganglia) are closely related to
synchronization; external influence such as
DBS can alter synchronization properties
* Desynchronization especially applicable

in clinical cases

* Preservation of graph characteristics

across length scales
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FitzHugh-Nagumo Equations
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* Reduced model of action | yff
potential for the i-th Y = Yi
neuron

Zz' — ¢(yz —+ a — bZZ),
Ui = VZ(?JJ‘ — Yi)-
J

* Ui excitatory (fast)
* Z4 inhibitory (slow)
* Linear electrical coupling U;
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A system is strictly semi-passive in a region D if there exists a
function V such that V < y'u — H(z), where H(z) > 0 outside a

ball of radius p.2
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Sufficient Conditions for Synchronization

Semi-passivity gives us bounded solutions y| < (313 2] < % %@@é
. 1 <

Choose Lyapunov function V = 5 ; (y1 —vi)® + (21 — 2)°] %%

For sufficiently large coupling, the (¢—1)2 1 (30)%/3 ;

completely synchronized state is stable. 77 kg Tk 3k

Rewrite states as average and
k- | differences from average

Transformed dynamics: =t =t

A singular perturbation for kv > 1 i=1
results in a single FN oscillator '
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Synchronized States
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Further Considerations:
Graph Structure and External Inputs

Arbitrary graph:
* Given sufficient condition on second smallest eigenvalue of the
coupling matrix
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* Stable complete synchronization state when
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Differing inputs:
e Cluster synchronization arises in heterogeneous systems.?

* Stability argument is identical to earlier cases: can use a
superposition of Lyapunov functions
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* Complete graph: clusters form based directly on inputs
* We find a sufficient bound for independent synchronization
of all clusters
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* Other graph structures - nontrivial to determine clusters
* High coupling limit - again approaches a single FN oscillator

Conclusions |

* We find an explicit bound on coupling that guarantees
complete synchronization in networks of homogeneous FN
oscillators
* Singular perturbation reduces to single FN oscillator

* |In external input case, we cannot get complete
synchronization
* New synchronization state is possible: cluster

synchronization
* Proved stability of cluster synchronization in complete
graph when coupling is above a threshold
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