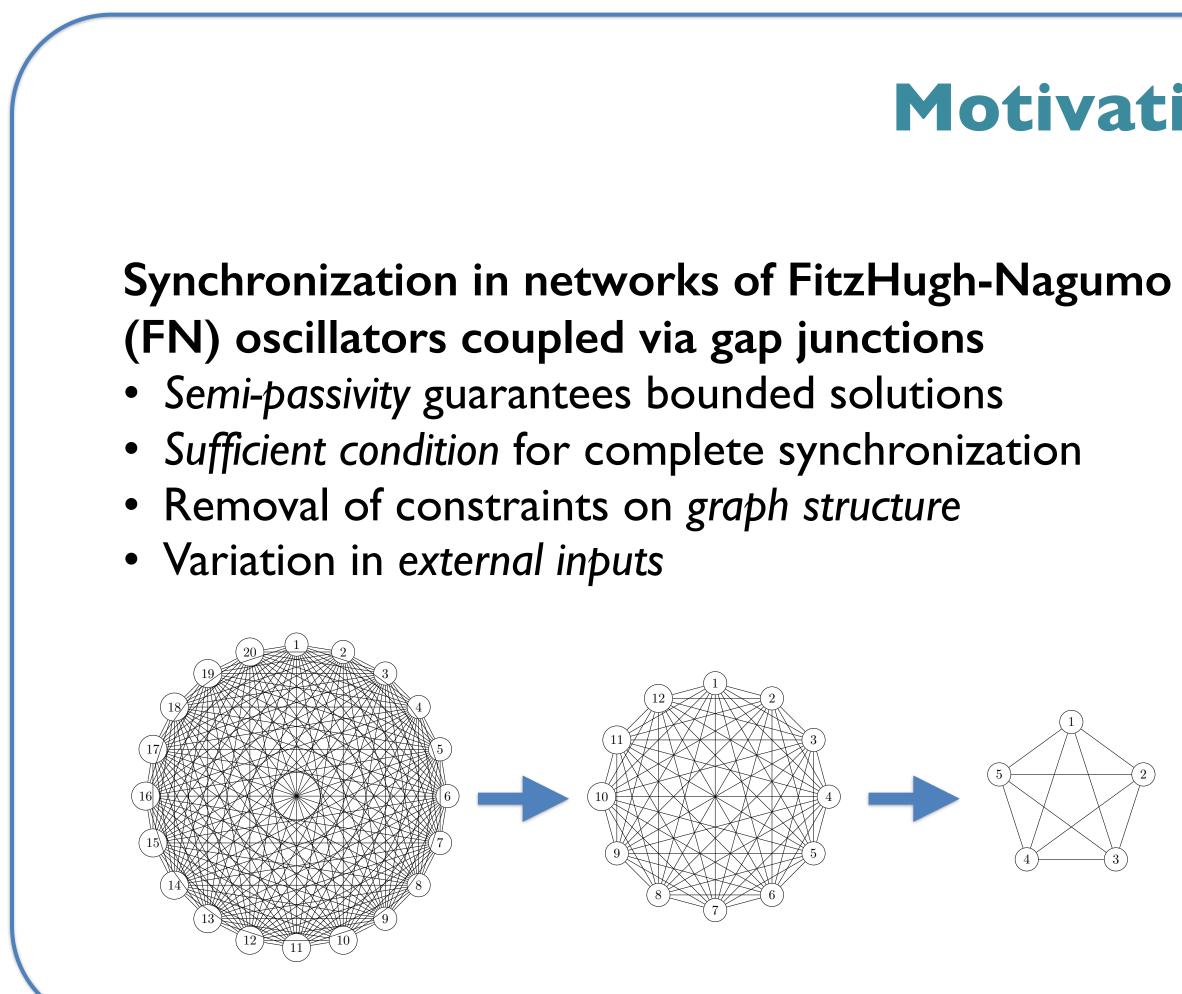
Heterogeneity and Synchronization of Coupled Neuronal Networks

Elizabeth Davison, Biswadip Dey, and Naomi Leonard



FitzHugh-Nagumo Equations

- Reduced model of action potential for the *i*-th neuron
- y_i excitatory (fast)
- z_i inhibitory (slow)
- Linear electrical coupling u_i

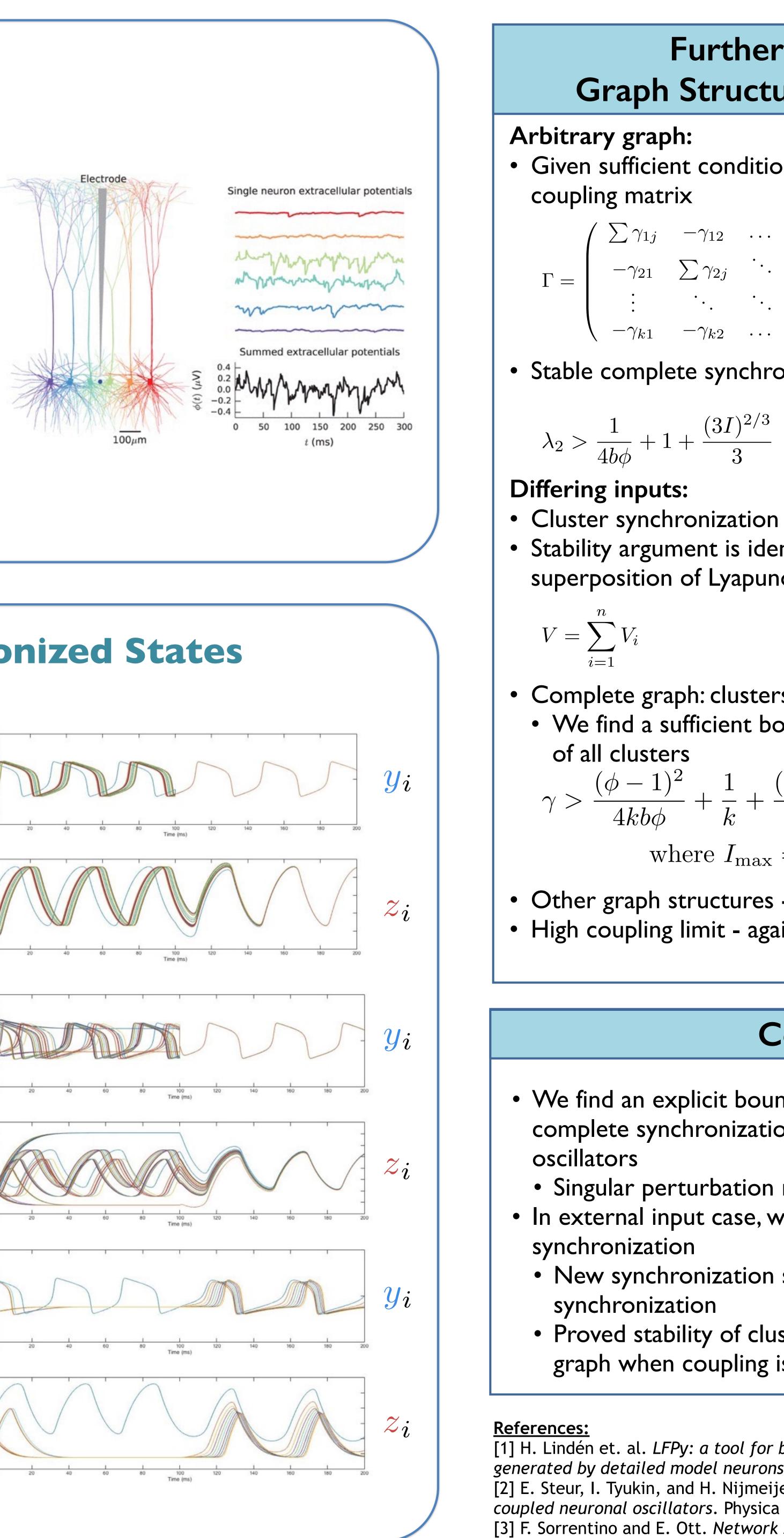
A system is strictly semi-passive in a region D if there exists a function V such that $V \leq y^{\top}u - H(x)$, where H(x) > 0 outside a ball of radius ρ .²

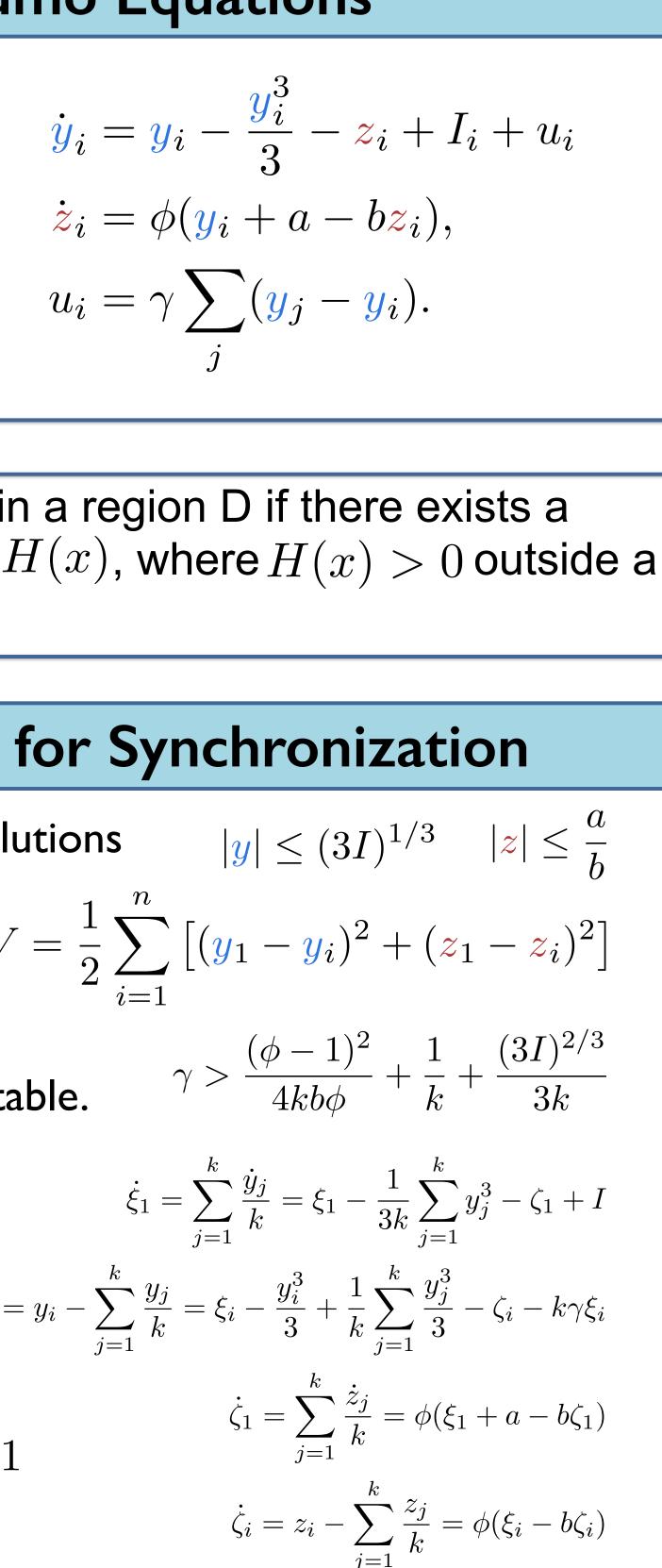
Sufficient Conditions for Sy	nchroni
Semi-passivity gives us bounded solutions	$ y \le (3I)$
Choose Lyapunov function $V = \frac{1}{2} \sum_{i=1}^{n}$	$\sum_{i=1}^{n} \left[(y_1 - y_i)^2 \right]$
For sufficiently large coupling, the completely synchronized state is stable.	$\gamma > \frac{(\phi - 1)^2}{4kb\phi}$
Rewrite states as average and $\dot{\xi}_1 = k$ k-I differences from average	$=\sum_{j=1}^{k}\frac{\dot{y}_j}{k}=\xi_1-$
Transformed dynamics: $\dot{\xi}_i = y_i - \sum_{j=1}^k \frac{y_j}{k}$	
A singular perturbation for $k\gamma\gg 1$ results in a single FN oscillator	$\dot{\zeta}_1 = \sum_{j=1}^k \frac{\dot{z}_j}{k}$ $\dot{\zeta}_i = z_i - \sum_{j=1}^k \frac{\dot{z}_j}{k}$
	<i>j</i> =

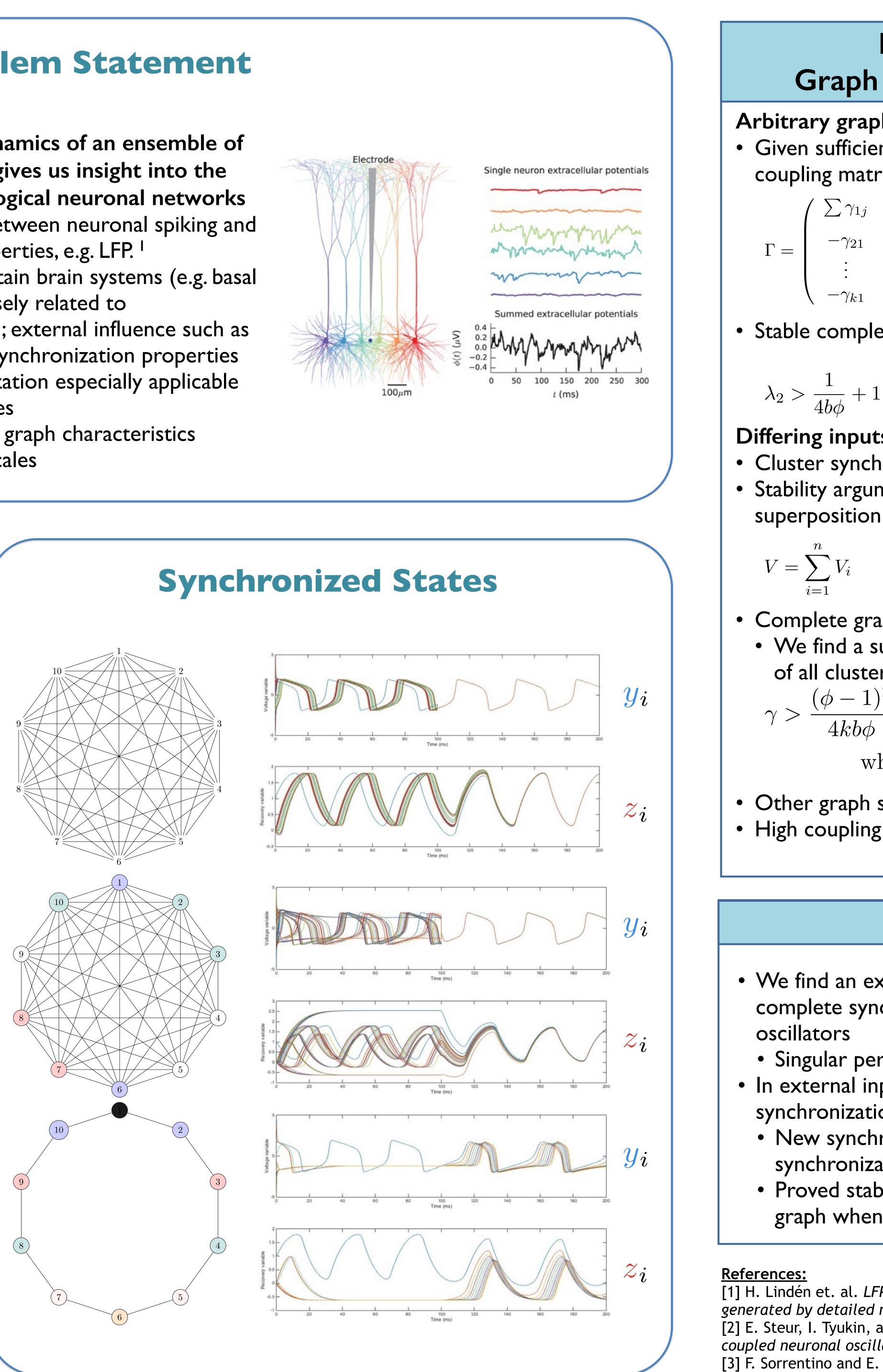
Motivation and Problem Statement

Studying the dynamics of an ensemble of model neurons gives us insight into the behavior of biological neuronal networks

- Connections between neuronal spiking and mesoscale properties, e.g. LFP.¹
- Function in certain brain systems (e.g. basal ganglia) are closely related to synchronization; external influence such as DBS can alter synchronization properties
- Desynchronization especially applicable in clinical cases
- Preservation of graph characteristics across length scales







PRINCETON

School of Engineering and Applied Science

Further Considerations: Graph Structure and External Inputs

• Given sufficient condition on second smallest eigenvalue of the

 $\mathbf{u} = -\Gamma \mathbf{y}$

2	•••	$-\gamma_{1k}$
2j	• •	$-\gamma_{2k}$
	•	
2	• • •	$\sum \gamma_{kj}$ /

Stable complete synchronization state when

• Cluster synchronization arises in heterogeneous systems.³ • Stability argument is identical to earlier cases: can use a superposition of Lyapunov functions

• Complete graph: clusters form based directly on inputs • We find a sufficient bound for independent synchronization

$$\frac{1}{k} + \frac{(3I_{\max})^{2/3}}{3k},$$
$$I_{\max} = \max_{i \in [1,k]} I_i.$$

• Other graph structures - nontrivial to determine clusters • High coupling limit - again approaches a single FN oscillator

Conclusions

• We find an explicit bound on coupling that guarantees complete synchronization in networks of homogeneous FN

 Singular perturbation reduces to single FN oscillator • In external input case, we cannot get complete

• New synchronization state is possible: cluster

• Proved stability of cluster synchronization in complete graph when coupling is above a threshold

[1] H. Lindén et. al. LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Frontiers in Neuroscience 7 (2014). [2] E. Steur, I. Tyukin, and H. Nijmeijer. *Semi-passivity and synchronization of diffusively* coupled neuronal oscillators. Physica D: Nonlinear Phenomena 238.21, (2009). [3] F. Sorrentino and E. Ott. *Network synchronization of groups*. Phys Rev E. 76, (2007).