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FitzHugh-Nagumo Equations Synchronized States

Synchronization in networks of FitzHugh-Nagumo 
(FN) oscillators coupled via gap junctions 
¥ Semi-passivity guarantees bounded solutions
¥ Sufficient condition for complete synchronization
¥ Removal of constraints on graph structure
¥ Variation in external inputs

Studying the dynamics of an ensemble of 
model neurons gives us insight into the 
behavior of biological neuronal networks 
¥ Connections between neuronal spiking and 

mesoscale properties, e.g. LFP. 1

¥ Function in certain brain systems (e.g. basal 
ganglia) are closely related to 
synchronization; external influence such as 
DBS can alter synchronization properties
¥ Desynchronization especially applicable 

in clinical cases
¥ Preservation of graph characteristics 

across length scales
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Conclusions

¥ We find an explicit bound on coupling that guarantees 
complete synchronization in networks of homogeneous FN 
oscillators
¥ Singular perturbation reduces to single FN oscillator

¥ In external input case, we cannot get complete 
synchronization
¥ New synchronization state is possible: cluster 

synchronization
¥ Proved stability of cluster synchronization in complete 

graph when coupling is above a threshold

A system is strictly semi-passive in a region D if there exists a 
function V such that                              , where                 outside a 
ball of radius   .2⇢

H(x) > 0V̇  y>u�H(x)

Sufficient Conditions for Synchronization
Semi-passivity gives us bounded solutions

Choose Lyapunov function 

For sufficiently large coupling, the 
completely synchronized state is stable.

Rewrite states as average and 
k-1differences from average

Transformed dynamics:

A singular perturbation for 
results in a single FN oscillator
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Further Considerations: 
Graph Structure and External Inputs

Arbitrary graph: 
¥ Given sufficient condition on second smallest eigenvalue of the 

coupling matrix

¥ Stable complete synchronization state when

Differing inputs:  
¥ Cluster synchronization arises in heterogeneous systems.3

¥ Stability argument is identical to earlier cases: can use a 
superposition of Lyapunov functions

¥ Complete graph: clusters form based directly on inputs
¥ We find a sufficient bound for independent synchronization 

of all clusters

¥ Other graph structures - nontrivial to determine clusters
¥ High coupling limit - again approaches a single FN oscillator
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¥ Reduced model of action 
potential for the i-th 
neuron 

¥      excitatory (fast)
¥      inhibitory (slow)
¥ Linear electrical coupling
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