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PROBLEM

Given a time series of observed positions {ri}Ni=0 in three dimensional space, our primary
objective is to generate a smooth trajectory to fit these data points.

A penalty term is introduced to assure smoothness of the reconstructed trajectory.

N∑
i=0

‖r(ti)− ri‖2
Fit Error

+ λ
∫ tN

t0

(
Suitable Path Cost

)
dt

Penalty Term
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BUT the relative importance of the fit
error with respect to the penalty term is not
known a priori.

The optimal value of the regularization
parameter (λ) is chosen using ordinary
cross validation, and the optimal value
depends on the signal-to-noise ratio in the
data.

GENERATIVE MODEL I
ṙ = νT

Ṫ = ν (k1M1 + k2M2)

Ṁ1 = −νk1T
Ṁ2 = −νk2T

(1)

Penalty Term to ensure smoothness:∫ tN

t0

(
k̇21 + k̇22 + ν̇2

)
dt
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GENERATIVE MODEL II
ṙ = v
v̇ = a
ȧ = u

(2)

Penalty Term to ensure smoothness:∫ tN

t0

(
uTu

)
dt

CHOOSING A REGULARIZATION PARAMETER (OCV)
We use a subset of the given dataset to ob-

tain a parameter estimate and use the rest of
the data for performance validation under that
particular value of the estimate.

Here we use leaving-out-one strategy.
Each data point is left out in turn and an es-

timate for the curve is derived from the rest of
the data. The prediction error is computed at
the left out data point and they are summed
to yield the ordinary cross validation cost. An
optimal λ minimizes the total prediction error
(sampled variance).

RESULTS (SYNTHETIC DATA - CURVE ON A SPHERE)
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Model II
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Classical Curvature (κ)Model I Model II
Avg. Fit Error 0.0599 0.0684
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WORK IN PROGRESS
We are working with generative model

I to reconstruct trajectories in a semi-analytic
way.

SOURCE CODE
The source code and associated paper are

available at
http://www.isr.umd.edu/Labs/ISL/
SMOOTHING/

RESULTS (BAT-MANTIS PURSUIT EVENT)
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Bat − Raw Data
Bat − Model II
Bat − Model I
Insect − Raw Data
Insect − Model II
Insect − Model I
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Speed (Bat) Speed (Insect)
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Curvature (Bat) Curvature (Insect)

Avg. Fit Error Model I Model II
Bat 2.2401× 10−4 7.6142× 10−5

Mantis 1.2966× 10−4 2.3913× 10−5

MODEL I→MODEL II
v = νT

a = ν̇T + ν2k1M1 + ν2k2M2

u = (ν̈ − ν3(k21 + k22))T

+ (3νν̇k1 + ν2k̇1)M1

+ (3νν̇k2 + ν2k̇2)M2

MODEL II→MODEL I
ν = ‖v‖

T =
v

‖v‖

Ṫ =
1

ν
(a− (a · T )T )

κ =
‖Ṫ‖
ν

τ =
v · (a× u)
‖v × a‖2

RECONSTRUCTION THROUGH ERROR MINIMIZATION

Approximation by piecewise constant
speed and curvature, transforms the prob-
lem into a non-convex numerical optimiza-
tion problem [2].

MATLAB routine: fminunc.
The algorithm is capable of estimating

curvature with higher resolution, but the
process is time consuming.

Model I (Nonlinear)
Path-independence lemmas and Riccatti equa-

tion ensure global optimality of the solu-
tion and the solution is semi-analytic [1].

Reconstructed positions can be expressed
as linear combinations of raw data, but the
linear weights vary across data points.

This method is orders of magnitude faster
than the nonlinear version of the story.

Model II (Linear)


