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Motivation and Background | Cluster synchronization in a network of non-identical oscillators
3 Synchronized activity is crucial for brain function: N For a network of N-oscillators with state x; € R",1 < ¢ < N we define the g
* Occurs at multiple levels (basal ganglia, local field potential) cluster synchronization manifold as G z\
 Related to many pathological conditions (epilepsy) SE = {X1 = =Xy vy XNecp4l =70 = XN\ X,; € R”},
, o _ where 1 < K < N, and thereexists 1 <e¢y,...,cg < Nsuchthatci+---+cg =
-l Insight about synchronization can lead to advances in: N. Then the network synchronizes in clusters if the state trajectories converge g1
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to S in some appropriate norm. The k-th cluster is defined as
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, , [ Oscillators belonging to the same cluster (e.g. C*) are identical.
\/\/ For a network of /V-oscillators with state x; € R", 1 <

1 < N we define the synchronization manifold as

O Cluster-input-Equivalence Condition (k-th cluster): 2. Yim = 2_ Yjm, VIE€{l,--- K} \k, Vi,j € C"
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Fitzhugh-Nagumo (FN) neuronal oscillator Necessity of cluster-input-equivalence condition
J Second-order Dynamics (Relaxation Oscillator): i > i AL \ \ \ \ \ \
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* Fast Dynamics:  y=1y / z +\U E_i’ / / / / j |
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* Slow Dynamics: z= (eXy — bz + a)

(Recovery Variable)

Slow Variable (z)
o

—> External Input X
k)
> Time Scale Separation E
S
. The dynamics of a FN Oscillator are strictly semi-passive, i.e. outside / é
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Diffusively-coupled network of FN oscillators Synchronization in networks of identical oscillators 2 Y ~ [N\ [ N \
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 Individual dynamics: Model Parameters: a; = a, b; = b, ¢, =€, I; =1 Vi §-1f j
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, yf’ 1 Non-Smooth Lyapunov Analysis:!} \? N\ = 50 - - i
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[ Electrical gap junction coupling: 5 _,
A Contraction Based Approach: TR = et < =
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1 We assume the network graph (G) to be connected, weighted
and undirected.
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. The closed-loop system has ultimately bounded solutions.
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