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SUMMARY

We describe in this article some key themes that emerged during a Caltech/AFOSR Workshop on
‘Principles and Applications of Control in Quantum Systems’ (PRACQSYS), held 21–24 August 2004 at
the California Institute of Technology. This workshop brought together engineers, physicists and applied
mathematicians to construct an overview of new challenges that arise when applying constitutive methods
of control theory to nanoscale systems whose behaviour is manifestly quantum. Its primary conclusions
were that the number of experimentally accessible quantum control systems is steadily growing (with a
variety of motivating applications), that appropriate formal perspectives enable straightforward
application of the essential ideas of classical control to quantum systems, and that quantum control
motivates extensive study of model classes that have previously received scant consideration. Copyright
# 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modern scientific inquiry and the demands of advancing technology are driving theoretical and
experimental research towards control of quantum systems. Compelling applications for
quantum control have been noted and have motivated seminal studies in such wide-ranging
fields as chemistry, metrology, optical networking and computer science. Experience has so far
shown that quantum dynamics and stochastics can be incorporated within the framework of
estimation and control theory but give rise to unusual models that have not yet been studied in
depth. The microscopic nature of quantum systems also demands renewed emphasis on
accounting for the essentially physical (finite impedance) nature of measurement and feedback
interconnections, which limits the applicability of state-feedback formalism and makes quantum
filtering an essential methodology for closed-loop control. Open-loop control remains effective
in the quantum regime but the actuation terms are generically bilinear. Overall, one begins to see
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that novel features of quantum systems could spur the growth of a new branch of control theory
to develop hand-in-hand with the cutting-edge applications that drive it.

We should be careful to note that theoretical foundations for quantum control have been in
place for some time. Among the participants of our small workshop, Belavkin, Rabitz and Tarn
each reviewed seminal work dating back to the 1980s [1–3]. But the current resurgence of
interest may be attributed to recent advances in experiments on quantum control and to the
emergence of high-profile applications in metrology, physical chemistry, quantum information
science and spintronics. It thus seems appropriate here to emphasize the importance of
grounding further theoretical investigations of quantum control in concrete experimental
settings and design goals of practical interest.

Our intent in writing this article is not to present a comprehensive review of the field, but
rather to attempt to provide a timely piece}motivated by presentations given at the
PRACQSYS Workshop}that can indicate some points of entry into the recent literature on
quantum control and its applications. We begin with a brief introduction and overview of some
compelling applications for quantum control, continue with a survey of relevant experimental
systems, and then turn to a more formal presentation of mathematical models and some open
problems.

2. QUANTUM CONTROL SCENARIOS AND APPLICATIONS

A question that inevitably arises in any introduction of quantum control is, ‘What makes a
control system quantum?’ In principle, our current understanding of physics holds that all
systems are quantum but manifestly non-classical phenomena are observable only under special
laboratory conditions. Roughly speaking, quantum ‘behaviour’ emerges in scenarios where a
relatively small physical system (with few active dynamical degrees of freedom) can be well
isolated from environmental perturbations and dissipative couplings. In some experiments this
effectively can be achieved by bringing an experimental apparatus to very low temperatures (as
in the superconducting circuit experiments cited below), while in others one can exploit a
separation of energy and/or time scales to observe transient quantum behaviour at room
temperature (as in experiments on atomic ensembles and liquid-state nuclear magnetic
resonance). From a more formal perspective, one could say that quantum mechanics is
believed to be a correct microscopic theory of (non-relativistic) physics but that the reduced
dynamics of subsystems nearly always corresponds closely to models that fall within the domain
of classical mechanics. Hence strongly non-classical behaviour can only be observed in a
subsystem on timescales that are short compared to those that characterize its couplings to its
environment. In the case of any macroscopic object, such as an ordinary mechanical pendulum,
there are so many such couplings (e.g. via mechanical coupling to its support and to air
molecules) that these timescales are inaccessibly short. From an even more abstract perspective,
one could say that Schrödinger’s Equation is meant to apply to the universe as a whole (whose
‘internal’ degrees of freedom are densely interconnected) while physical experiments deal only
with embedded subsystems. Unless great care is taken to suppress the environmental couplings
of an experimental system, the overwhelming tendency is for its behaviour to appear classical, or
at least imperfectly quantum.

The accurate quantitative modelling of ‘imperfectly quantum’ behaviour in open systems
(i.e. those with non-negligible residual environmental couplings) is a subject of intense study in
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many branches of physics. Generally speaking, one finds fundamental theory in the fields
of quantum statistical mechanics and mathematical physics, with more system-specific
results in fields such as atomic physics, quantum optics and condensed matter physics.
One of the main goals for theoretical research in quantum control will be further to inte-
grate what is known from the physics of open quantum systems with core engineering
methodologies.

A second question that may naturally arise at this point is, ‘Why should we study quantum
control?’ One answer is that the above-mentioned integration of the theory of open quantum
systems with estimation and control appears to provide an important new conceptual
framework for the interpretation of quantum mechanics itself. By scrutinizing quantum
mechanics as a theory for the design of devices and systems, as opposed to a theory for scientific
explanation only, we gain new insight into obscure features of quantum theory such as complex
probability amplitudes and ‘collapse of the wave function.’ In particular, we are able to make
more focused comparisons between classical and quantum probability theories. But a second
compelling answer to the question at hand is that various branches of research on
nanotechnology are advancing to the point of investigating ‘mesoscopic’ devices whose
behaviour remains quantum on timescales of functional relevance. It thus seems clear that in
order fully to exploit the powerful methodologies of control theory in the design and
implementation of advanced nanoscale technologies, control theory needs to be reconciled with
quantum mechanics.

As we hope the following discussion will illustrate, this reconciliation does not appear to
require any radical reformulation of control theory. It does however seem that nanoscale
systems (broadly defined) and quantum control present new classes of models that fit within the
scope of traditional analysis and synthesis methods but have yet to be studied in depth. To date
there have been a number of publications that demonstrate the use of standard control-theoretic
techniques to analyse models of quantum-physical origin; we will not attempt to review them
here. We prefer to emphasize the recent development of concrete applications}tied to
experimental research}that generate urgent questions most naturally addressed by quantum
extensions of estimation and control theory. These applications and questions are in turn
motivating the thorough and principled development of certain practical aspects of quantum
control.

A first major application area, to be described in greater detail below, is protein structure
determination via nuclear magnetic resonance (NMR). Ideas from control theory have clear
relevance to this field because protein structure determination can naturally be viewed as a
problem in system identification. In the typical setting one has foreknowledge of the types of
atomic nuclei that constitute a given protein, and has experimental tools that can induce
rotations of these individual nuclei and collect signals that gauge their precise response to
applied controls. The unknown parameters of the system are the relative spatial positions of the
various nuclei, which can be inferred from experiment by estimating the relative strengths of the
dynamical couplings among nuclei. Questions of optimal procedure arise because measurement
signal-to-noise ratios are typically quite low, because dissipative mechanisms suppress the
observability of dynamical couplings among the nuclei, and because the total number of
measurements that must be made to establish the structure of a protein is tremendously large
(thus putting a premium on speed of the identification procedure). It is intriguing to note that,
even though NMR researchers have been working for many decades to optimize relevant
techniques, the recent introduction of control theoretic methods has enabled some substantial
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improvements in performance (with high practical impact). Many further opportunities can be
identified for the application of control theory to NMR.

Over the past decade, a number of groups have proposed and demonstrated close connections
between magnetic resonance (of nuclear and/or electronic spins) and quantum information
processing. The quantum states of nuclei in certain types of molecules and solid-state systems
can be well shielded from environmental perturbations, making them an attractive physical
locus for the storage and processing of quantum information. Manipulation of individual
nuclear states and conditional transformations of the state of one nucleus based on that of
another (corresponding to the implementation of a quantum logic gate) can be accomplished via
tailored radio-frequency electromagnetic fields. In this context questions of optimal control arise
for much the same reasons as in protein structure determination, with the additional
consideration that large-scale quantum computation may require extremely high fidelity (with
inaccuracy 910�4) in these elementary quantum state transformations [4, 5]. This need for high
fidelity can be compounded by the fact that in real experiments it is typically necessary
(especially in NMR) to work with a sample containing very many identical molecules, in order
to make the ‘readout’ signals sufficiently strong that they can be detected above instrumental
noise. The unavoidable presence of inhomogeneities across such a large sample of molecules
then demands a certain degree of robustness in the control policies employed, generating further
interesting challenges for the theory.

Similar quantum control problems arise in a wide range of physical implementations of
quantum information processing. In systems from atomic physics, the nature of the problems is
very similar to what has been described above for the setting of magnetic resonance. In solid-
state systems, one generally finds an intriguing combination of issues of both identification and
control. Whereas accurate ab initio models can often be constructed for NMR and atomic
systems, the modelling of solid state systems typically requires a more phenomenological
approach. In particular, it is seldom possible to derive accurate models for the residual
environmental couplings of something like a superconducting quantum circuit. The precise
nature and strength of these couplings should be known in order to design control schemes that
maximize the fidelity of elementary quantum operations, which as discussed above should be
very close to perfect if one is ultimately interested in large-scale quantum computation. Some
recent theoretical research [6–8] has also shown that tools from control and dynamical systems
theory can play a substantial role in the formulation and analysis of fault-tolerant architectures
for quantum computation and communication.

Quantum computation represents a very high-profile long term goal in nanoscale science and
technology; the related field of quantum metrology (or quantum precision measurement)
provides a setting with similar technical challenges and with near-term payoffs for the
exploitation of quantum control. In applications of high strategic and industrial interest, such as
prompt and accurate estimation of magnetic fields, electrical currents, time delays, gravitational
gradients, accelerations and rotations, it is just now becoming possible to construct laboratory
prototype systems whose leading-edge performance is enabled by techniques that exploit
quantum coherence and is limited by noises or uncertainties of quantum-mechanical origin. In
these contexts it is natural to look to quantum control to provide techniques for achieving
robust performance, based on approaches such as optimal design, adaptation and real-time
feedback. Preliminary studies grounded in several different experimental settings [9, 10] have
shown, e.g. that real-time feedback can be used to preserve quantum-limited sensitivity gains in
the presence of multiplicative uncertainties that would otherwise nullify them. Concrete targets
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for the application of such methodology range from atom interferometer-based inertial sensing
systems to grand scientific projects such as the Laser Interferometer Gravitational Wave
Observatory (LIGO). In both of these examples [11–13], promising strategies exploiting
quantum phenomena have been formulated to surpass near-term performance limits, but
quantum control techniques will likely be required in order to implement them robustly.

The final application area we wish to highlight is control and identification of chemical
reactions. As has been discussed in some excellent recent review articles [14, 15], tailored laser
pulses can be used to induce and to steer molecular processes ranging from fragmentation [16] to
electron transfer [17] and high-harmonic generation [18]. It has been noted that the typically
complex nature of the interaction between applied fields and intrinsic dynamics in an optimal
control solution could make it possible to design highly selective and sensitive approaches to
detecting dangerous chemicals in an environmental monitoring scenario [19, 20]. An interesting
feature of recent work on control of chemical reactions is that highly successful control solutions
have been ‘discovered’ using learning loops that combine computer optimization algorithms
with fast and automated laboratory apparatus for experimentally (as opposed to computation-
ally) evaluating the performance of trial solutions. Such an approach is particularly powerful in
the chemical reaction setting as it is often infeasible to obtain accurate models for the relevant
molecular dynamics. Early experimental successes have provided strong motivation for
theoretical research on improved learning algorithms and on methods for ‘inverting’ the
empirically-optimized control solutions to infer pertinent properties of the molecular dynamics.

Looking across these applications some common theoretical themes and challenges emerge.
Many experiments, such as those in NMR, involve the simultaneous manipulation of an
ensemble of systems with non-negligible dispersion in important physical parameters. The
control challenge is to find excitations that are robust to such inhomogeneities. These problems
naturally motivate a class of infinite-dimensional systems that are highly under-actuated, as one
is trying to steer a continuum of systems using the same control. Such models raise interesting
controllability issues that are discussed in Section 4.3.

Optimal control problems also arise naturally for quantum systems. Generally speaking,
controls that achieve their objective in minimum time are desired to minimize dissipative effects
associated with residual couplings to the system’s environment. From a mathematical
perspective, many of these problems reduce to time-optimal control of bilinear systems
evolving on finite or infinite dimensional Lie groups. Although bilinear control problems have
previously been studied in great detail, rich new mathematical structures can be found in
quantum problems. The added structure enables complete characterization of time-optimal
trajectories and reachable sets for some of these systems [21, 22], as described in Section 4.1.
Another class of quantum optimal control problem is steering in the presence of relaxation, as
discussed in Section 4.2. Recent work of this type has shown, e.g. that significant improvements
can be made in the sensitivity of multidimensional NMR experiments [23–25].

Research on closed-loop quantum control has opened new areas in estimation and filtering.
Building on seminal work in quantum probability and quantum filtering theory, it has been
possible to derive exact results for ‘quantum LQG’ problems that correspond very closely to
analogous results in classical Linear Quadratic Gaussian control. It has been established that
general problems in quantum feedback control can be approached via a separation principle,
such that all of the uniquely quantum-mechanical considerations are subsumed in the derivation
of appropriate filtering equations [26]. Control synthesis can then be viewed as a problem of
state feedback on the estimator. The availability of quantum filtering equations also enables
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rigorous approaches to (open- and closed-loop) quantum parameter estimation and quantum
system identification. In addition to the intrinsic interest of these subjects, we should note that
they represent very important problems within fields such as quantum information science and
quantum metrology.

3. EXPERIMENTAL SYSTEMS

Here we provide brief overviews of three relevant classes of experimental systems. As mentioned
above, coherent control of molecular dynamics and chemical reactions has recently been
reviewed [14, 15] by experts in the field, so we will refer the interested reader rather than
synopsizing their materials here. Tutorial introductions are beyond the scope of this article, so
our aim is to provide references in a manner that highlights points of interest to the controls
community.

3.1. Magnetic resonance

NMR began as a tool for characterizing organic molecules but has spread to diverse areas
including pharmaceutics, structural biology, solid state chemistry, condensed matter physics,
rheology and medical diagnostics (medical resonance imaging) [27–29]. The principles of NMR
are a paradigm for further physical methods that rely on interactions between radiation and
matter. It is thus not surprising that NMR experiments also serve as good model problems for
quantum control. In this section we briefly introduce NMR studies of biomolecular structure
and describe some associated control problems.

Modern NMR experiments use a large static magnetic field Bz � 5� 20 T to orient the
magnetic moments of atomic nuclei. The resulting net magnetization M in the direction of Bz is
then manipulated by an oscillating radio frequency field ðBxðtÞ;ByðtÞÞ in a plane perpendicular to
Bz: This field exerts a torque on M, which then evolves as
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The Bloch model in Equation (1) is a model bilinear control system where the time varying
ðBxðtÞ;ByðtÞÞ act as controls. Since ðBxðtÞ;ByðtÞÞ=Bz910�4; subtle design principles must be
employed.

In a typical scenario, oscillating ðBxðtÞ;ByðtÞÞ can be used to transfer initial magnetization
Mð0Þ ¼ ð0; 0; 1Þ; to the x–y plane. If the oscillating field is then turned off, M precesses freely
around Bz at the Larmor frequency o0: This induces an oscillating current in a nearby coil,
which when Fourier transformed shows a peak at o0 ¼ gBz; where g depends upon nuclear
species. At a field of 14 T; the Larmor frequencies of protons ð1HÞ; nitrogen ð15NÞ and carbon
ð13CÞ are 600, 60 and 150 MHz; respectively. NMR thus provides an important analytical tool in
chemistry as spectral peaks reveal the atomic composition of molecules. In addition, the detailed
electronic environment of a nucleus alters its local magnetic field and hence shifts its Larmor
frequency. These shifts are characteristic of the chemical environment of the spins and can be
used to assign the various peaks in a proton spectrum to specific amino acids of a protein
(‘frequency labelling’) [30, 31]. Following this, a series of measurements can be used to
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characterize interactions among the frequency labelled protons to yield information on
distances between the amino acids. These constraints can be sufficient to determine the protein
structure (folding configuration).

The spectrum of a large protein is poorly resolved due to crowding of the spectrum by
numerous resonances and increased line widths caused by relaxation. Multidimensional NMR
can be used [27] to counteract this. Multidimensional NMR experiments generate a two
dimensional spectrum, where each peak in the spectrum is labelled by the Larmor frequencies of
a coupled spin pair. For example, the first label could be the Larmor frequency of a proton, and
the second label the Larmor frequency of another species coupled to it (such as 15N). As a result,
two protons with overlapping Larmor frequencies can now be distinguished by their associated
nitrogen frequencies. Experiments that generate such two-dimensional spectra involve intricate
control of coupled spin dynamics [27, 31]; in NMR spectroscopy of proteins, many elaborate
procedures have been developed to improve resolution [31].

There are many intriguing problems related to optimizing the sensitivity of multidimensional
NMR. From the perspective of control theory, these are related to steering bilinear systems with
drift. Finding time-optimal pulse sequences that induce a certain evolution of coupled spins
or reach a target state with minimum relaxation losses are long-standing problems in NMR.
They have only recently been addressed from a control theory perspective [21–25], and there
are many other open problems that can benefit from similar treatments. Optimal control of
coupled spin topologies has a direct connection to quantum information, as will be discussed in
Sections 4.1–4.3.

3.2. Atomic physics

Basic studies of atomic internal degrees of freedom (which determine their characteristic
absorption and emission spectra) were crucial for the early development of quantum mechanics,
and in recent years atomic systems have again become the focus of seminal research in quantum
control and related fields. Because of their relative simplicity and the ease with which they can
be isolated from bulk matter, gas-phase atoms provide a canonical setting for validating
elementary methodology. Techniques have been developed for controlling electron orbital
motion and hyperfine spin dynamics, with potential applications in quantum information
processing and metrology. The development of laser cooling techniques has made it possible to
observe and to induce quantum phenomena in atomic centre-of-mass motion as well; various
forms of matter-wave interferometry are now widely studied and there has recently been an
explosion of activity in the study of quantum phase transitions of cold atoms in optical lattices.

Quantum control techniques developed previously by atomic physicists are mainly of intuitive
origin (often adapted from magnetic resonance [28, 29]). But researchers working on atomic
systems have begun to explore the utility of robust pulse sequences from NMR [32] and of
optimal control theory [33] as it has been formulated by physical chemists [2], and have likewise
succeeded in generalizing some principles from elementary frequency domain feedback control
[34, 35] (a working knowledge of which is required for many atomic physics experiments). As it
is often possible to model atomic systems essentially from first principles, sophisticated synthesis
techniques from control theory could have significant impact. Preliminary investigations suggest
that model complexity can be a serious obstacle, however, as can technical limitations on
generating laser control fields. Atomic dynamical timescales can be quite short (�10�9 to
�10�3 s), which presents a challenge for the implementation of closed-loop methods. Model
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reduction and robustness will thus be highly desirable in the development of quantum control
for atomic systems.

It is important to note that there is a solid theoretical foundation for the physical modelling of
input and output channels for atomic control systems. In particular, continuous measurements
based on the scattering of laser light by atoms can be accurately modelled, thus enabling a
rigorous treatment of the quantum-mechanical measurement ‘backaction’ in quantum feedback
control (see Section 4.4).

Several classes of atomic experimental systems can be identified with relevance to quantum
control. After decades of intense laboratory development, trapped ions now provide a very clean
realization of the elementary quantum model of one or more spins coupled to simple harmonic
oscillators. Long coherence times can be obtained with trapped ions, together with very low
effective temperatures; they have thus become quite important for applications in frequency
metrology [36] and quantum information processing [37]. Various techniques have been
established for manipulating the quantum state of trapped ions via lasers and electric fields, and
some of these have been analysed from the perspective of geometric control theory [38, 39].
Trapped ions have provided some of the most sophisticated examples of open-loop quantum
control to date, but one potential drawback of these systems (for fundamental studies in
quantum control) is that real-time monitoring of dynamical variables in a small sample of
trapped ions is extremely difficult (see however References [40, 41]). For practical applications
this could be less of an impediment than one might imagine, however, as stochastic
perturbations can be kept relatively small in these experiments and high purity initial states
can be prepared.

Many of the attractive features of trapped ions can also be found in single-atom cavity
quantum electrodynamics (cavity QED) [42]. In modern cavity QED, an electromagnetic
resonator with high quality factor and small mode volume is utilized to achieve strong coupling
between individual atoms and photons. Experiments conducted in the microwave regime
[43, 44], with Rydberg atoms and superconducting resonators housed in a cryostat, have
achieved quantum control results on par with what has been accomplished using trapped ions.
Experiments in the optical regime [45], with ground-state atoms and dielectric mirror
resonators, have recently begun to produce ground-breaking results in active control of
quantum dynamics as well [46] (with potential applications in quantum communication and
cryptography). Optical cavity QED has the benefit of being the one of the few settings in which
it is currently possible to perform continuous measurement of quantum dynamical variables, as
would be required for real-time feedback control. Several theoretical papers can already be
found on applications of filtering and feedback in cavity QED, e.g. for active cooling of the
motion of a single atom [47] or for control of the atomic resonance fluorescence spectrum [48].
Early interest in quantum control of cavity QED was stimulated by applications in quantum
information science, and also by general interest in non-equilibrium statistical mechanics and
the quantum}classical interface [49].

Experiments on large ensembles of atoms have also recently entered the domain of quantum
control. Here one sub-class of experiments utilizes simple vapour cell samples, in which special
technical preparations enable long coherence times for collective internal degrees of freedom of
gas-phase atoms whose centre-of-mass motions are at equilibrium at room temperature. Both
open-loop [50] and closed-loop [51] experiments have been conducted with significant interest to
quantum control, although the direct motivation of these works was more along the lines of
quantum information science. A second sub-class of experiments on atomic ensembles works
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with laser-cooled clouds of gas-phase atoms. Again, both open- [52, 53] and closed-loop [54]
experiments have been performed, with motivations stemming from both metrology and
quantum information science. The open-loop work on interfering pathways in laser excitation of
electronic orbital motion provides a compelling demonstration of a key principle from the
physical chemists’ perspective on quantum control, and may have the potential to find practical
application in stability transfer of optical frequency standards [55]. The closed-loop work is
related both to feedback-stabilized preparation of quantum states (for fundamental studies or
for quantum information applications) and to proposed schemes [10] for robust atomic
magnetometry (magnetic field measurement). The latter work connects current experiments to
more formal theoretical work on linear quadratic Gaussian (LQG) quantum control, quantum
filtering and quantum parameter estimation (see Sections 4.4 and 4.5).

Although the essential ideas involved in quantum control with atomic ensembles are similar to
those of NMR, we should emphasize that the atomic experiments manipulate pure (or nearly
pure) quantum states whereas the liquid-state NMR research described above generally works
with the so-called effective pure states [56]. Magnetic resonance experiments with low temperature
solid-state samples [57] or electron spins [58] are more like atomic systems in this regard.

Finally, we wish to call attention to a new class of experiments on atoms in optical lattices.
Optical lattices are one-, two- or three-dimensionally ‘corrugated’ mechanical potentials, created
by laser light, that can be used to modulate the motion of cold atoms and even confine them in
crystalline arrays. The interaction between the laser light and the atomic centre-of-mass motion
depends generally on the atomic internal state, which makes optical lattices an interesting setting
in which to couple these quantized degrees of freedom [59] (much as has been done with trapped
ions). Experiments have been proposed to investigate the crossover from chaotic classical
dynamics to quantum dynamics in such systems [60], and also to implement quantum logic gates
among neighbouring atoms in the lattice [32, 61–63]. When an optical lattice is ‘loaded’ from a
degenerate quantum gas, such as an atomic Bose–Einstein condensate, it is possible to observe
intriguing quantum phase transitions of the kind that have long been studied in condensed
matter physics [64, 65]. Theoretical studies have begun to appear on the possibility of actively
controlling these quantum phase transitions in order to access exotic atomic collective
states [66, 67].

3.3. Solid-state systems

Solid-state systems provide rich dynamical settings for the investigation of quantum
phenomena. The construction of accurate theoretical models can be quite challenging, but it
has been possible to achieve excellent agreement with experiments in numerous scenarios of
interest for quantum control. Here we will only briefly survey some systems that were discussed
at the PRACQSYS workshop and provide experimental and theoretical references. It seems
worth noting that recent work on solid state quantum control suggests that practical limits to
achievable performance will derive from the finite temperature of sensors and actuators; this is
an unusual and interesting ‘physical’ consideration for estimation and control.

Superconducting circuits incorporating Cooper-pair boxes have become a central paradigm
for the study of many-body quantum dynamics, mesoscopic physics and solid-state quantum
information processing. It is now possible to produce coherent superpositions of quantum states
of such circuits, to observe coherent dynamics in them, and to perform readout with high fidelity
and low backaction [68]. Open-loop control in superconducting circuits is thus reaching a level
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of maturity comparable to that of trapped ion systems, although the decoherence mechanisms
are much less well understood and the achieved control fidelities have accordingly been
substantially lower. But superconducting circuits provide access to a broader range of
dynamical phenomena, including bifurcations and limit-cycle behaviour for quantized effective
degrees of freedom; some of these have been well characterized and even exploited as the basis
for constructing novel quantum amplifiers [69]. Recently it has become possible to couple
Cooper-pair boxes to high quality factor microwave resonators [70], leading to the realization of
‘circuit QED’ systems with many features in common with single-atom cavity QED as described
above. These developments open exciting new prospects for observing conditional evolution and
possibly implementing real-time feedback control.

Electron spin degrees of freedom in semiconductor systems are likewise amenable to quantum
control, with important applications in the emerging information technology paradigm of
‘spintronics.’ Here the vision is to utilize electron spin (rather than charge) as the carrier of
information in computer circuitry, with concomitant gains in speed and miniaturization. One
drawback to the use of electron spins is the relative difficulty of implementing control
mechanisms to change their states rapidly and with high spatial selectivity. By analogy with
NMR experiments one would think of using pulsed magnetic fields, but this would be very
difficult to do with the required speeds and localization. It has recently been demonstrated that
one can instead utilize the effective magnetic fields (due to the relativistic transformation of local
electric fields) seen by electrons moving at high speed through a strained semiconductor [71]. This
insight could provide the basis for crucial further developments, with numerous opportunities for
control theoretic analysis and design. These relativistic effects create an unusual dynamical
coupling of an electron’s spin (intrinsic angular momentum) to its linear velocity, which should
be quite interesting to study from the perspective, e.g. of geometric control.

One final development we wish to mention is the impressive recent progress on reaching a
quantum regime for the dynamics of nano-scale mechanical oscillators [72, 73]. Here the
fabrication of sub-micron cantilevers with extremely low internal dissipation and weak
environmental couplings, combined with state-of-the-art cryogenics and electro-mechanical
sensors, has made it possible to approach conditions in which quantum behaviour should
become observable and controllable. Initial theoretical studies have been conducted of the
feasibility of using feedback for active cooling of a cantilever to its quantum mechanical ground
state [74], and strategies have been proposed and analysed [75] for coupling a nano-mechanical
cantilever to a Cooper-pair box to provide an alternative solid-state realization of dynamics
analogous to that of single-atom cavity QED.

4. MODELS AND PROBLEMS ARISING IN QUANTUM CONTROL

The applications and experimental system described above have given rise to many theoretical
research challenges in quantum control. Here we discuss a selection of them and provide
references to relevant publications.

4.1. Bilinear and geometric control problems in quantum systems

Quantum control typically involves actuation via tailored electromagnetic fields. These are then
bilinear control problems (usually with drift) for the unitary evolution operator U; which
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(neglecting decoherence) evolves under the Schrödinger equation ð h� ¼ 1Þ

’U ¼ �i Hd þ
Xm
j¼1

ujHj

" #
U ð2Þ

Hd is the internal Hamiltonian of the system and Hj are the Hamiltonians describing res-
ponses to applied controls (usually electromagnetic fields) ujðtÞ: There has been significant
interest in controllability of these systems [76–86] both in finite dimensions (as in the case of
coupled spins) and infinite dimensions (as in the cases of trapped ions and of molecular
dynamics [38, 39, 85]).

In the finite dimensional case results on controllability carry over from classical control
theory [87–89], as captured by the Lie algebra f�iHd ;�iHjgLA generated by the Hamiltonians
Hd and Hi: For infinite-dimensional bilinear control systems, many conceptual and technical
difficulties remain [38, 39]. Controllability arguments for steering infinite dimensional systems
between eigenstates have been primarily constructive [90, 91]. There has been recent interest in
utilizing geometric control theory but much work remains to be done. Infinite-dimensional
bilinear control problems also arise naturally when one is trying to steer an ensemble of finite
dimensional quantum systems [92–95], as discussed in Section 4.3.

In general, external excitations must cooperate with the intrinsic dynamics Hd to achieve a
desired evolution, such as transferring coherence between spins in magnetic resonance [21]. This
reliance on Hd puts a fundamental limit on the time required to implement a desired evolution.
Characterizing all unitary transformations that can be synthesized in a given time is an
important problem related to the design of time-optimal excitations for bilinear control systems
with drift [21, 22]. This problem has practical significance since time-optimal methods for
steering the system in Equation (2) between points of interest minimize dissipative effects caused
by interaction with the environment.

Recent study of such problems has elucidated the relationship between Lie algebras generated
by control Hamiltonians ¼ f�iHjgLA and the full control algebra g ¼ f�iHd ;�iHjgLA and the
associated groups K ¼ exp and G ¼ expðgÞ [21]. The time required to synthesize a desired
evolution in Equation (2) can be related to control systems on the quotient space G=K ; a
satisfactory theory has emerged when the quotient space G=K is a Riemannian symmetric
space [21]. These spaces arise naturally in the contexts of magnetic resonance and quantum
information processing with spin-1

2
particles [21, 22, 78], where the space G of unitary

transformation of coupled spins is SUð4Þ: External excitations produce local unitary
transformations in the subgroup K ¼ SUð2Þ � SUð2Þ: Analysis of the resulting control systems
on SUð4Þ=SUð2Þ � SUð2Þ [21, 96, 97] has made the synthesis of unitary transformations for
coupled spin-1

2
particles (‘qubits’) transparent. The associated Cartan decomposition of SUð4Þ in

terms of the subgroup SUð2Þ � SUð2Þ has been utilized for design of quantum logic gates
[76, 96, 98–101]. Many of the entanglement-generation properties of quantum gates can be
studied using these Cartan decompositions [101]. The reachable sets and time-optimal controls
in Equation (2) can be completely characterized when G=K is a Riemannian symmetric space
[21]. Many of these time-optimal control designs have been experimentally realized in the
context of magnetic resonance [102, 103].

Geometric methods hold promise for problems of optimal control in more elaborate scenarios
involving networks of coupled quantum systems in various quantum information processing
architectures. Many of these optimal control problems reduce to the study of subRiemannian
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geodesics [104] on homogeneous spaces [22]. In the general problem of control of a network of
coupled qubits, the control subgroup K ¼ SUð2Þ � SUð2Þ � � � �SUð2Þ of local unitary
transformations is much smaller than the group of all unitary transformations G ¼ SUð2nÞ:
Finding efficient ways to realize unitary evolutions in a network of coupled quantum systems is
thus an interesting and timely challenge for geometric control theory. For infinite-dimensional
quantum systems, the problems of optimal control design are mainly open [39]. Besides
generation of specified unitary evolutions, there are important time-optimal control problems
related to state-to-state transfer. These range from problems of optimal synthesis of
entanglement and transfer between eigenstates in a chain of trapped ions [38] to transfer of
polarization along a spin chain [105].

Although study of bilinear control systems is not new, physical problems arising in control of
quantum systems motivate new mathematical structures and facilitate further developments in
nonlinear and geometric control theory.

4.2. Optimal control of quantum dynamics in the presence of relaxation

In practice, the interaction of a quantum system with its environment makes its evolution non-
unitary and induces relaxation to some equilibrium state. In applications, this leads to loss of
signal and information. Manipulating quantum systems in a manner that minimizes relaxation
losses is a fundamental challenge of practical importance.

There has been significant interest in the development of techniques for optimal control of
quantum dynamics in the presence of relaxation, primarily in the context of magnetic resonance
[23–25, 106, 107]. Most of the work in this area has focused on scenarios where the environment
can be approximated as an infinite thermostat and the evolution of the open quantum system
can be modelled by an equation of the Lindblad type [108, 109],

’r ¼ �i Hd þ
X
j

ujðtÞHjðtÞ;r

" #
þ LðrÞ ð3Þ

The evolution is no longer unitary but the control system retains a bilinear structure as r! LðrÞ
is a trace preserving linear map. Understanding controllability properties of systems of the form
3 is a topic of active investigation [110].

Consider a model problem associated with optimal control of coupled spin dynamics in the
presence of relaxation [24]. Given the control system [111]

d

dt

x1

x2

x3

x4

2
666664

3
777775 ¼

0 �u 0 0

u �k �J 0

0 J �k �v

0 0 v 0

2
666664

3
777775

x1

x2

x3

x4

2
666664

3
777775 ð4Þ

with k; J > 0; and starting with the state ð1; 0; 0; 0Þ; what is the maximum achievable value
of x4 and what are the optimal controls u and v that achieve this value? Note that even
if the strength of controls is unbounded, there is a fundamental limit on the maximum value
of x4:

The study of problems on control of open quantum systems has led to the investigation
of certain constraint bilinear control problems of the following form [24, 111]. Let x 2 Rn

Copyright # 2005 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2005; 15:647–667

H. MABUCHI AND N. KHANEJA658



and u 2 Rm: Consider the system

’x ¼ Aþ
Xk
i

fiðuÞBi

 !
x ð5Þ

where fiðuÞ is a polynomial or more general function of control parameters u: Find the reachable
set of such a system starting from some initial state xo: Problems of optimal control of Lindblad
equations also arise naturally in the context of laser cooling. Recently, these control problems
have been studied with the goal of finding optimal excitations to minimize the entropy of a
quantum system [112, 113].

4.3. Control of ensembles

Many quantum control applications involve simultaneous steering of a large ensemble of
systems with a single applied control. In practice, the elements of the ensemble can vary in
physical parameters that govern their dynamics. In magnetic resonance experiments, e.g. the
spins of an ensemble may have large dispersion in their Larmor frequencies, strength of
couplings between coupled spin pairs and spin relaxation rates [114]. A canonical problem in
control of quantum ensembles is to develop external excitations that can simultaneously steer
the ensemble of systems with variation in their internal parameters from an initial state to a
desired final state [92–95]. From the standpoint of mathematical control, the challenge is to
simultaneously control a continuum of systems with the same control.

Consider the following bilinear control system that captures the dynamics of an ensemble of
spin-1

2
particles in an external magnetic field, as described in Section 3.1

d

dt

x

y

z

2
664
3
775 ¼

0 �o �auðtÞ

o 0 avðtÞ

auðtÞ �avðtÞ 0

2
664

3
775

x

y

z

2
664
3
775 ð6Þ

Consider now the problem of designing controls uðtÞ and vðtÞ that simultaneously steer an
ensemble of such systems with o 2 ½�B;B� from an initial state ðx; y; zÞ ¼ ð0; 0; 1Þ to a final state
ðx; y; zÞ ¼ ð1; 0; 0Þ [92]. This problem is of particular interest when the maximum amplitude of
the applied field AðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðtÞ þ v2ðtÞ

p
is comparable to or less than the bandwidth B one is

trying to cover [92]. In Equation (6), the parameter a might also show dispersion. In magnetic
resonance applications, this arises when different spatial positions in the sample experience
different rf-fields due to field inhomogeneities.

These problems raise questions about controllability, i.e. showing that there exists a control
law ðuðtÞ; vðtÞÞ satisfying

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðtÞ þ v2ðtÞ

p
4Amax which simultaneously steers all the systems with

o 2 ½�B;B� and a 2 ½1� e; 1þ e� to a ball of chosen radius around the final state ð1; 0; 0Þ in finite
time. Furthermore, practical considerations like relaxation (Section 3.1) motivate construction
of the shortest control that achieves this goal. These are problems of control of infinite-
dimensional systems of a special kind. A systematic study of these systems is expected to have
immediate applications in areas of coherent spectroscopy and control of quantum systems in
general. Generalization of these problems to controllability and optimal control questions
related to the problem of transferring an initial function ðxðo; 0Þ; yðo; 0Þ; zðo; 0ÞÞ to a target
function ðxðo;TÞ; yðo;TÞ; zðo;TÞÞ by an appropriate choice of controls in Equation (6) is
relevant in NMR and MRI applications.
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Another type of problem that arises in ensemble quantum control is the optimization of an
average quantity. Consider the model problem of optimal state transfer in the presence of
relaxation described in Equation (4) in Section 4.2 [24]. Now J and k are distributed in the range
ðJ1; J2Þ and ðk1; k2Þ; respectively. The goal is to design uðtÞ and vðtÞ that maximize the average
value of x4 over all the systems, i.e. that maximizeZ J2

J1

Z k2

k1

x4ðJ; k; tÞ dJ dk

4.4. Quantum probability, filtering and feedback

The models considered in previous sections pertain to open-loop control, and here we wish to
provide a brief introduction to real-time feedback control of open quantum systems. To begin
with we should clarify that we consider setups in which the plant is an open quantum system
while the sensors, controller and actuators can reasonably be modelled classically. (Scenarios
involving quantum-mechanical controllers have also been considered, e.g. by Lloyd and co-
workers [115].) In the theory of real-time quantum feedback control, there remains a distinction
between state- and output-feedback paradigms, but care must be taken to avoid ‘improper’
applications of state-feedback methodology. (In principle it could suffice at this point to state
the fact that quantum physics forbids perfect and complete measurements of the state of any
single quantum system, but we will attempt to provide a more operational explanation.) While
direct state feedback can of course be investigated in a quantum setting as a purely theoretical
exercise, or as a computational tool for the design of open loop controls, it never really provides
a faithful representation of actual feedback interconnection. As discussed below, quantum
feedback control is essentially stochastic and one must generally resort to a separation principle.
However, in experimental scenarios with low measurement sensitivity (low signal-to-noise
ratio), the sensor noise can be so dominated by ‘excess’ noise that the state estimator never
converges to the level of intrinsic quantum uncertainties. In such cases the filtering problem can
effectively be treated classically, leading for example to certainty-equivalent control models in
which there is quantum dynamics (in the response of the system to applied fields) but no
measurement backaction. This type of approach is formally similar to state feedback and is in
fact well-motivated in current research on feedback cooling and closed-loop system
identification of atomic ensembles [34, 116].

In experimental scenarios with high measurement sensitivity it is crucial to utilize quantum
filtering equations as have been derived by researchers in mathematical physics [117] and
quantum optics [118, 119]. (In intriguing recent work, James [120] has derived quantum risk-
sensitive filtering equations that could be utilized for robust feedback control.) These equations
are derived by considering a ‘physical’ account of the continuous measurement of an open
quantum system (e.g. a cloud of atoms) in which some probe field (e.g. a laser beam)}itself a
quantum system}is coupled to the plant via Hamiltonian dynamics (e.g. electromagnetic
coupling of atoms and photons according to Maxwell’s Equations). This dynamical coupling
creates correlations between the quantum states of the plant and the probe, such that a
subsequent destructive measurement of the probe (e.g. photodetection of the transmitted laser
beam) yields some information about the evolving plant state. If it is assumed that such a
sequence occurs repeatedly in coarse-grained time steps, one can take an Itô-like limit to obtain
stochastic differential equations (SDEs) for propagating a recursive estimate of the plant state.
It is important to note that quantum uncertainties associated with the probe field induce some
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degree of unavoidable randomness in the measurement (e.g. photodetector) signals and/or the
probe-induced perturbations of the plant evolution. Because of the quantum nature of the probe
field it is impossible to conduct measurements on an open quantum system in such a way that
both the sensor noise and ‘measurement-induced process noise’ vanish, and it is also impossible
to make simultaneous accurate determinations of both noises ‘after the fact’ by scrutinizing the
transmitted probe field. (There have been some theoretical investigations [121, 122] of schemes
in which an optical probe beam is prepared in a highly ‘squeezed’ state to suppress sensor noise,
while photodetection and feedback are used to cancel the measurement-induced process noise,
but at present they are practically infeasible.) The use of proper quantum filtering equations in
the design and analysis of quantum feedback systems is thus crucial to ensure full compliance
with subtle physical constraints on achievable performance.

While it remains an outstanding research challenge to derive and to validate quantum filtering
equations for solid-state quantum control systems, they are known with confidence for many
systems in atomic physics including single-atom cavity QED [123] and hyperfine spin dynamics
in atomic ensembles [124]. Such stochastic master equations (as they are known in quantum
optics and atomic physics) have been used for numerical investigations of proposed quantum
feedback schemes [47, 125] and also provide a starting point for analytic work. Some scenarios
of great practical interest, such as feedback control of atomic spin-squeezing [54] and closed-
loop magnetometry [10], fall into a class of quantum Linear Quadratic Gaussian (LQG) systems
for which exact analytic treatments are possible [126, 127]. For these systems the quantum
filtering equations can be used to derive closed sets of SDE’s for the first and second moments of
a quorum of quantum variables. These can be put in the form of Kalman filters [128] and the
usual LQG analyses from classical control theory apply straightforwardly. In such LQG
quantum control models the only signature of the underlying quantum mechanics lies in the fact
that certain inequalities must be observed among gain and covariance matrices therein; hence
quantum LQG models are in a sense a subset of all possible classical LQG models [127].

Beyond the LQG regime it becomes difficult to obtain exact results, although some recent
progress has been made on applying stochastic global [26] and almost-global [129] stability
methods to solve stabilization problems in systems of low dimension. The basic state of affairs in
nonlinear quantum control reflects the relatively underdeveloped state of nonlinear stochastic
classical control, and one hopes that quantum systems will provide new impetus for a
reinvigoration of the latter field as well.

4.5. Quantum system identification

As mentioned above, the problem of determining the structure of a protein using NMR is an
example of what engineers might call a system identification problem. Applications in quantum
metrology (such as magnetic field detection or inertial sensing) may also be viewed in a system
identification framework. System identification problems have been widely studied in the field of
automatic control because the design of an effective feedback control system begins with an accurate
model, and because the use of open- or closed-loop controls can often improve identification
accuracy or speed. Quantum system identification problems present new mathematical structure
and optimization criteria because of the nature of the dynamics, some novel technical constraints,
and the types of measurement backaction issues described in the preceding section.

It is useful to distinguish between quantum system identification procedures that are ‘single-
shot’ versus those that employ an sequence of measurements on a fixed apparatus. As an
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example of the former type of problem, we refer back to our previous mention of LQG quantum
feedback control on atomic systems [54]. It is possible to formulate extended Kalman filters for
such scenarios, in which one or more parameters appearing in the Hamiltonian are treated as
static or dynamic variables to be estimated from a continuous measurement signal. Some
general investigations have appeared on the sensitivity and optimization of such procedures
(including analytic studies in the Gaussian framework and numerical studies allowing more
general likelihood functions) [130–132]. A thorough analysis has been performed of using this
strategy for broadband magnetometry with atoms [10], and it has been shown that real-time
feedback can be exploited for significant gains in robustness. Generally speaking it seems that
closed-loop single-shot procedures provide an ideal approach to estimating non-stationary
system parameters robustly.

While single-shot procedures will presumably become more prevalent in the future (with high-
profile applications such as LIGO), most quantum system identification problems considered to
date are based on the statistical analysis of a series of measurements on a fixed apparatus. The
existing literature on classical system identification is almost exclusively devoted to problems for
which the choice of input can be decoupled from the identification problem. But with insensitive
techniques such as NMR, for which measurement time is precious, the design of input signals
that reduce the time required for system identification is extremely important. Some recent work
in this area [133] examines the problem of determining a good probing signal for system
identification as a problem in minimizing the entropy of the probability density for the
parameter values, given the observations [133]. This results in a mathematical formulation of the
optimal input problem, that, at least in principle, has a solution that defines best input sequences
or family of sequences that lead to efficient reduction of uncertainty in system parameters. (Note
that in the literature of quantum information theory, this type of problem has been labelled
‘quantum process tomography.’)

The problems of Hamiltonian identification also arise in other applications of quantum
control. As mentioned above, there is now extensive experimental work on using closed-loop
methods for design of laser excitations in control of molecular reactions. These methods use
stochastic search techniques, including genetic algorithms to learn control designs that optimize
the final yield of the experiment [134–136]. Many of these problems could benefit by a systematic
development of techniques of system identification for Hamiltonian estimation.

A complementary problem to system identification that often arises in quantum contexts is
that of state reconstruction. The basic challenge is to derive an optimal measurement [137] or
(possibly adaptive) sequence [116] of measurements to be performed on one or more ‘copies’ of
a quantum state in order to identify it as quickly and as accurately as possible. This
identification may have any prior over a discrete or continuous set of possible states. The
problem is clearly related to observability on one hand and communication theory on the other,
providing an interesting possible point of contact between control theory and quantum
networks [138].

5. CONCLUSIONS

There are now a number of quantum control systems for which basic theory is in place and
experiment has reached an advanced stage. The control-theoretic study of these systems will be
important for a wide range of strategic applications. Broader engagement by the controls
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community could be exceptionally fruitful at this time, as could be the training of physicists with
deeper knowledge of estimation, control and dynamical systems theories. Quantum control
provides a unique opportunity for reexamining the physical basis of control and estimation
theory, and may ultimately shed new light on fundamental issues in quantum physics as well.
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