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1. Introduction

Recently, port-Hamiltonian (PH) models (van der Schaft,
2000) have been a focus of attention in the control community
(e.g. Cheng, Astolfi, and Ortega (2005), Fujimoto, Sukurama, and
Sugie (2003), Ortega, van der Schaft, Maschke, and Escobar (2002)
and Wang, Feng, and Cheng (2007)). There are, at least, two
reasons for their appeal: first, that they describe a wide class of
physical systems, including (but not limited to), systems described
by Euler-Lagrange equations. Second, that PH models directly
reveal the fundamental role of the physical concepts of energy,
dissipation and interconnection—making passivity-based control
(PBC) (Ortega & Spong, 1989; van der Schaft, 2000) a suitable
candidate to regulate the behavior of PH systems.
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In this paper, we are interested in the stabilization of PH
systems using control by interconnection (Cbl) (Ortega, van der
Schaft, Mareels, & Maschke, 2001; Ortega et al., 2002). Similarly to
other PBC techniques, the objective in Cbl is to render the closed-
loop passive with respect to a desired energy (storage) function.
This is accomplished in Cbl selecting the controller to also be a PH
system which, connected to the plant through a power-preserving
interconnection, results in a closed-loop that is again PH with
energy function equal to the sum of the plant’s and the controller’s
energies.

In its original formulation, applicability of Cbl is stymied by
the so-called dissipation obstacle (Ortega et al., 2001), a problem
that appears when the dissipation of the open-loop is different
from zero at the desired equilibrium. In Ortega, van der Schaft,
Castafios, and Astolfi (2008), this problem has been solved,
generating different passive outputs giving rise to the so-called
power shaping Cbl. Both methods, standard and power shaping
Cbl, rely on the creation of functions, called Casimirs, which
are independent of the energy function. The existence of these
invariants presents an obstruction to the asymptotic stabilization
of the desired equilibrium. The main contribution of this paper
is to propose two modifications to the existing Cbl to overcome
this problem. The first modification is motivated by adaptation
principles, while the second one is based on the addition of an extra
damping injection to the controller. As an additional by-product of
the analysis performed, the two versions of Cbl are unified.
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To make the paper self-contained, we begin the following
section with a brief description of Cbl and refer the reader to Ortega
et al. (2008) for more details. Section 3 contains specific guidelines
to apply Cbl for equilibrium stabilization. The modifications to
achieve asymptotic stability are then presented in Section 4.
Finally, we state some concluding remarks in Section 5.

Notation. The arguments of the functions are omitted once they

are defined and there is no possibility of confusion. All vectors

defined in the paper are column vectors, even the gradient of a

scalar function, denoted with the operator V £ d‘—’x We also define
2 . .

V22 ;’7 Given a vector x and a matrix K = KT > 0, ||x|| denotes

the Euclidean norm and ||x||x the norm x ' Kx.

2. Preliminaries

Although this note deals with PH systems (van der Schaft, 2000)
only, it will be useful to consider first a general nonlinear system

x=fx) +g®u
y = h),
where x € R" is the state, u € R™ is the input and y € R™ is the

output, withm < n. The functions f, g and h are smooth and of ap-
propriate dimensions and the matrix g is full rank, uniformly in x.

(1)

2.1. Cyclo-passivity

Definition 1. System (1) is said to be cyclo-passive if there exists a
differentiable function H : R" — R (called the storage function)
that satisfies the power balance inequality

H<ylu ()
when evaluated along the trajectories of (1).

Recall that a system is passive if (2) holds and H is bounded
from below. Because of this additional restriction, every passive
system is cyclo-passive but the converse is not true. In terms of
energy exchange, cyclo-passive systems exhibit a net absorption
of energy along closed trajectories (Hill & Moylan, 1980), while
passive systems absorb energy along any trajectory that starts from
a state of minimal energy x(0) = arg min H(x).

According to Hill-Moylan’s Theorem (Hill & Moylan, 1980),
system (1) is cyclo-passive (with storage function H(x)) if and only
if, for some q € N, there exists a function [ : R" — R? such that

VH'f = —||I? (3a)
h=g'VH. (3b)
Setting the dissipation d 2 |I||? and differentiating H leads to the
power balance
H=y'u—d. (4)
We now focus on PH systems
i

where F : R" — R with F + F' < 0. It can be easily verified
that (5) is cyclo-passive with storage function H and dissipation
d2 —VHTFVH.

For future reference let us compute the assignable equilibria
of (5) as the elements of the set

&2 {x|g'FVH =0}, (6)

with gt : R" — R®™*" 3 fyll rank left-annihilator of g, that is,
g'g = 0andrankg = n — m. Associated to each x, € & thereisa
uniquely defined constant control given by

U, £ —g" (x)F(x)VH(x.), (7)

where g+ is the Moore-Penrose pseudo-inverse of g, that is, g™ 2
[eTg]'g". Note that g* is well-defined since g is assumed full
rank, implying that the inverse of g " g always exists.

2.2. Example

The system described by

, 1 1,
O-() ()

can be written in the PH form (5) with

1 ) 1,
F=<_2 Xz), H=5><3+XZ, g=(2_xz> (9)
0 —x x

and output
1
y=g'VH =x (5 —x%) +x3.

Notice that Eq. (4) does not yield any information about the
stability of the open-loop equilibrium (0, 0), since H is not
bounded from below. Actually, it can be readily seen that with
u = 0 the equilibrium is unstable and that the trajectories of the
open-loop system exhibit finite escape time. Moreover, the origin
cannot be stabilized by any continuous feedback.

The set of assignable equilibria for this system is

& = {(x1,%2) | X5(1 — x1x2) = 0} . (10)

2.3. Control by interconnection

In CbI a PH controller of the form

JE=ue
e {yc = VHC(S) (11)
isproposed. & € R™ is the state of the controller, uc, y. are the input
and the output of the controller, respectively, and H. : R™ — R
is a to-be-designed controller storage function. See Ortega et al.
(2008) and van der Schaft (2000) for a justification of this choice
of controller structure.

Control by interconnection comes in two basic variants. In the
standard version, X' and X are coupled using the classical unitary
feedback power-preserving interconnection

T

where v is a new virtual input.! It is well-known (van der Schaft,
2000) that the PH structure is invariant under power-preserving
interconnection; this pattern leading to the interconnected PH

system
-8 g

Y15t 3 g
0) CHT

yrs = (g

1 We recall that an interconnection of PH systems is power preserving if it
satisfiesy 'u +yluc =y .
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with
Hr(x,&) £ H(x) + Hc(§) (14)

the new total energy.

A new version of Cbl has been recently introduced in Ortega
et al. (2008) that, being related to the power shaping procedure
of Ortega, Jeltsema, and Scherpen (2003), is called power shaping
Cbl. In this case, F is assumed to be non-singular and a modified PH
system with a new passive output is generated as

Xx=FVH +gu
EDS:{ £

it 15
Yps = —g ' F~T(FVH + gu). (13)

Noticing thaty,s = —g ' F~ ' xitis easy to show (Ortega et al., 2003)
that (15) satisfies H < uTypS. The interconnection is then given by

-0 D0 o

that yields the PH closed-loop system?

X F —g
)l = _ 2 VH
() = (Lgrrrr geeg) v

Srps : g (17)
+ TFTg)?

-8
yrps = (g —g'F'g) VHr.

So far, we have constructed interconnected systems which are
cyclo-passive with storage function Hr. Since H. can be modified
at will, it seems reasonable to use it to “shape” the total storage
function. We are interested in shaping Hy along the x coordinates,
but unfortunately, H. is a function of &, so this idea cannot be
applied directly. One way to get around this, is to relate x and &
in the following way.

Assumption 2. There exist a differentiable mapping C : R" — R™,
the Jacobian of which has rank m and at least one of the following
conditions is satisfied.

(1) (Standard CbI)

(e ()

(2) (Power shaping Cbl) det F(x) # 0 and
FVC = —g. (19)

Assumption 2 is made throughout the paper. That is, it is assumed
that, for the given F and g, a solution of the partial differential
equations (18) or (19) is known. Also, to simplify the presentation,
it is assumed that F is full rank. The power shaping Cbl presented
above is called “Basic CbI-PS” in Ortega et al. (2008). In that paper
we present another version of Cbl that generates a new, full-rank
matrix to replace F.

In Ortega et al. (2008) it is shown that condition 1 (resp., 2)
of Assumption 2 ensures that, for any k € R™, the manifolds
Mo = {(x, &) | C(x) — & = «} are invariant® under the flow of the
system (13) (resp., (17)). As discussed in Ortega et al. (2008, 2001)
and van der Schaft (2000), and also shown below, the construction

2 10 verify that it is indeed PH, notice that for any x and &,

F —8 X
(T £7) (_gTF—TF gTF—Tg> <$)

=(x—F'gt) F(x—F'g&) <0.

3 That is, C(x(t)) — &(t) = C(xo) — & V t, where (xo, &) = (x(0), £(0)).

of this, so-called, Casimir function C(x) — & is the key step of Cbl
that allows to shape the storage function in the state coordinates
x. In order to reveal this property and, at the same time, provide
a unified framework to study both versions of Cbl, we find it
convenient to define the PH system

X
: | =F:VH; + grv

o <s> TVHT T8t (20)
yr = g VHr

where

Notice that (20) describes the behavior of both closed-loop
systems, (13) and (18), or (17) and (19). In the sequel we deal
only with (20) on the understanding that, depending on which
condition of Assumption 2 is satisfied, we are referring to either
one of the Cbl controllers.

The proposition below opens the possibility of creating
appropriate storage functions that can be shaped along x.

Proposition 3. The PH system (20) is cyclo-passive with storage
function

W(x, &) = Hr(x,§) + ®(C(x) — §), (22)
for any differentiable @ : R™ — R.

Proof. Compute W = H; + . Since Xy is cyclo-passive with
storage function Hr and dissipation d; £ —VHTT FrVHr, we have

W=0Tyr—dr+V 0 (VCT —I) (;)

= vaT —dr

where the last equality follows from (20), (21) and
I
T _
(ve" i) (VCT> =0. O

3. Stabilization

In this section we show how Proposition 3 can be used for
stabilization of an arbitrary element of the assignable equilibrium
set &, defined in (6). We propose functions H. and @ and give
conditions on C that ensure the stabilization requirement.

As a first step, define the set of equilibria & for the system (20)
in open-loop (i.e., with v = 0). According to (20) and (21)

& ={(x,&) | FVH —gVH, = 0}. (23)
In the previous section it has been shown that W satisfies
W =ylv—dr. (24)

with dr > 0. It follows from standard Lyapunov theory that if W
has a strict minimum at a point (x,, &) € & and we set v = 0, then
(x,, &,) is stable. Our goal is thus, to find appropriate @ and H., and
impose conditions on C, such that

(., &) = argmin W (x, §). (25)
Clearly, negativity of W can be reinforced by setting
v=—Kyr, K =K >0. (26)

This damping injection (also called L;V) approach is usually
adopted in PBC to try to make the equilibrium asymptotically stable,
which is the case if yt is a detectable output (van der Schaft, 2000).
Unfortunately, we will show below that the latter condition is not
satisfied for Cbl and we must adopt another strategy, which will
be presented in Section 4. But first we propose a solution to the
problem of stabilization of an arbitrary element of &,.
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3.1. Stabilization of assignable equilibria

Proposition 4. Consider X given by (20) with v = 0. Fix any point
X, € & and compute the corresponding u, via (7). Let

3 le =Kl @)
where K. = K. > 0 and select

®(n) = —u/n.

Then (x,, 0) is an equilibrium of the closed-loop system (20), that is,
(., 0) € &.% Furthermore, (x,, 0) is a stable equilibrium if

m
VPH®) — Y u,iV2G(x,) > 0. (28)
i=1

Proof. First we prove that (x,, 0) € & for any x, € &. Note, from
the definition of H., that VH.(0) = —u,, with u, given in (7). The
implication

g'FVH =0 and gVH.=gg"FVH
— FVH —gVH. =0 (29)

is then easily established. Eq. (29) defines & (cf. (23)).

We now prove that (x,,0) = argminW((x, &) by verifying
the conditions VW (x,,0) = 0 and V?W(x,,0) > 0. Let 4 2
{(x,&) | VW = 0} be the set of extrema of W. From (22) and
(14)one obtains

A ={(x,&) | VH+VCVH. =0, VH, = V&}.
On the other hand, from Assumption 2 we have
FVC = —g. (30)

The set of equilibria for the closed-loop system (20) can be written
as

& = {(x,8) | FVH —gVH, = 0}
= {(x,&) | VH 4+ VCVH, = 0}, (31)

where we have used (30) and detF # 0 in the second identity.
Using the definitions of @, H,. and (31) we conclude that (x,, 0) €
A is equivalent to (x,,0) € 6.

It has been shown above that for all x, € &, (x,,0) € w.
We now give conditions under which they are minimum points.
Some simple calculations proceeding from W(x, &) = H(x) +

111E = K Mu, HIZQ —u][C(x) — &], yield the Hessian

m

V2H — Zu,ivzc,- 0
i=1
0 K,

Viw =

)

from which we conclude that the equilibrium (x,, 0) is stable if (28)
holds®> O

4 Later on, we will exploit the possibility of setting the equilibrium at points other
that (x,, 0).

5 Sure, V2W > 0 s only a sufficient condition for local optimality. Nevertheless,
it is not a very conservative one in the sense that given (27), a necessary condition
is V2ZW > 0.

3.2. Example (continued)

The function C(x) = x; + 1x3
(9), that is,

1 ) 1
e} )0- (i
0o —x/\7 —x3

The matrix F is non-singular everywhere except at the line x, =
0, that will be ruled out of the analysis. Since Condition 2 of
Assumption 2 is satisfied we apply power shaping Cbl.

Because of the assignable equilibria set (10), we consider
equilibria of the form x, = col(x1., t),with X1« € R\ {0}. Remark
that u, = X1s.

Since the Hessians of H and C are

2y _ (10 2. {0 0
V°H <O O> and VC—<0 1),

condition (28) is satisfied if and only if u, < 0. Then, applying
Proposition 4, any point of the form (x1,, %), X1, < 0,is stabilized

by the controller
€ = —VC'gVH. + VC'FVH
u = —VH..

satisfies (19) for system (5) and

4. Main result: Asymptotic stability

In Section 2.3 we have proposed to shape the storage function
(along the state x) via generation of the invariant manifolds
M, = {(x, &) | C(x) — & = «k}. Unfortunately, the latter poses the
following problem. Suppose the system starts at an arbitrary initial
condition (xg, &). There is no reason why the desired equilibrium
(X4, &) should satisfy

C(X*) - é* = C(XO) - EO' (32)

One way to fulfill (32) is to initialize the controller at the value
& that puts the system in the proper invariant manifold. This
approach is simple but the dependence on the initial conditions
makes it highly non-robust. In general, (x,, &,) does not belong to
the orbit of the solution starting at (xg, &), hence the output yrt is
not detectable, and the desired equilibrium might be stable but not
asymptotically stable even with the damping injection (26).

Our main contribution is to present two alternative solutions to
the problem. Before giving these results let us take a closer look
at our example to get a clearer picture of the role of the Casimir
function.

4.1. Example (continued)

Suppose that we want to stabilize the point (—1, —1, 0), so that
u, = X1, = —1. By setting K. = 1, the Lyapunov function is

W(x, €) = Hx) — u, (C(X) — &) + He(§)

% [Ca + D+ o+ D+ 6] - 2,
the level sets of which are spheres centered at (—1, —1, 0).
Suppose, further, that the system is initially at (xo, &) =
(3, -3, B). so that C(xo) —& = 2+ 33— 2 = 0.since
Cx,) — & = —1+ 5 + 0 # 0, the trajectory does not reach
the desired value. The trajectories cannot diverge either, since W is
radially unbounded. Instead, the trajectory reaches an invariant set
contained in the invariant manifold My = {(x, £) | C(x) — & = 0}.
The set &€ is the union of the sets described by the parametrized
curves q;(X;) = col(x1, Xi] —% — 1), % € R\ {0} and
q2(X1) = col(x1,0, —x; — 1), x; € R (see Appendix for details).
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(w(£), (1)) —

0.5
§o X
0.5+ -
-35
-1
-1.5 =
2l S 05
1.5 : s | Zo
£— 05 2.5

0 .'VL']"

Fig. 1. The invariant manifold My, the equilibria locus & and the simulated
response.

Fig.2. Levelsets of W and invariant manifold .My, equilibria locus & and simulated
response, projected into the planes x, = —1 (above) and & = 0 (below).

Note that &€ N Mo = {(—0.85, —1.18, —0.15), (—0.5, 0, —0.5)}.
Fig. 1 shows My, & and the trajectory starting at (xp, &) =
(3,—1.2) and converging to (—0.85, —1.18, —0.15). Fig. 2
shows the intersection of M, and the level sets of W with the
planes x, = x;, = —1and & = &, = 0. The projections of &
and the trajectory are also shown.

4.2. Adaptive Cbl

It is clear that another way to satisfy the constraint (32) is by
shifting away from zero the desired value of £ to the new value

& = C(x) — C(x0) + &o. (33)
This amounts to changing H. to

1
He®) = 5 & =& — k7w (34)

so that VH.(§,) = —u,. Geometrically, we are shifting the
equilibrium locus & along &, so that it intersects the manifold
where the trajectory starts, that is, M, with

Ko £ C(xp) — &o, (35)

at the desired x,.

In principle, this scheme still hinges on knowledge of the initial
condition, but this issue can be removed by reformulating it as a
parameter estimation problem. We try first a classical certainty-
equivalence adaptive control approach viewing &, as the unknown

parameter. This is indeed possible because the plant is linear in
u and, for quadratic H, &, enters also linearly in u. Define a new
storage function for the controller (11) as

’

. 1 R B
R R

2

Ke

where é} denotes the estimate of &,. Let us compute

VeHe = Ke(§ —£) —ue = K6 — &) —u. — K&,
= VHC - chn

where we have defined the parameter error 5* 4 é* — &,. The
control signal then becomes u = —VEI:Ic = —VH. + ch*. The
closed-loop system is still of the form (20) with v replaced by
v+ Kcé*. Since the invariance of the manifolds .M, is preserved,
the power balance equation (24) is still satisfied with the “new v”.
Proceeding with the classical adaptive control design we would
propose a candidate Lyapunov function V (x, &, 5,) = W, &)+
Hél—, r = I'" > 0, and an estimation law of the form

é‘,, = —I'K.yr, which would make V. = W < 0. Unfortunately,
this simple scheme will not solve our problem. Indeed, since the
derivative of the new Lyapunov function has not changed, the lack
of detectability problem is still present. The only way to achieve
the desired objective is to ensure parameter convergence, that is,
lim; o &(t) = 0, which is not satisfied due to existence of a
manifold of equilibria.

It turns out that if we estimate the parameter x, (instead of
&,) and use the invariance of the manifold M,, we can design
a scheme that ensures parameter convergence. The result is
summarized in the proposition below, which is the adaptive
version of Proposition 4.

Proposition 5. Consider the PH system X (resp., X)) given in (5)
(resp., (15)) interconnected through X;(12) (resp., X,s(16)) with the
adaptive controller

i {ko= A (Ro —C(x) + )

Ye = V?,Hc(ga /20)
where Hc(8, ko) 2 1|6 — Cx) + ko — K u,
in(7)and v = —Kyyr.

||12(c u, is defined

(i) Exponential parameter convergence is ensured, more precisely
Ko (t) — ol < e~*mintlIt |20 (0) — Kol forall t > 0.
(ii) For any x, € & the point (x,, &,, 0), where &, is given in (33), is
a stable equilibrium if (28) holds.
(iii) The orbits of the residual dynamics are confined to the set Z x
{& = &), where & is a constant and

-
zZ =< {XI (i?r) "[FVH — g (K(C(x) = C(x)) —u)] = 0} .

(iv) Suppose no trajectory x(t) can stay identically in Z, other
than isolated points. Then, (., &,, 0) is an asymptotically stable
equilibrium. It will be globally asymptotically stable if it is the
only point in Z and if W is radially unbounded.

Proof. Define iy £ Ko — k. From invariance of the manifold A,
we have that ko = C(x0) — & = C(x(t)) — &(t). Consequently,
ko = —I'kg, from which claim (i) follows immediately.

Proceeding as done for the standard adaptive controller above,
one has that Vgl:lc = VH, — Kckg, u = —VH; + Kckp, and the
power balance equation becomes

W =yl (v — K&op) — dr. (36)
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Consider the Lyapunov function candidate V(x, &£, ko) = W +
%Ilko ”ir—“ with i > 0. Differentiation with respect to time and
some standard bounding shows that, for all K, K¢, I'", there exists
u such that

V < —dr — e(llyzll* + I%oll?) (37)

holds for some € > 0, which shows that V is a Lyapunov function,
so the equilibrium is stable establishing (ii).

Now, we apply LaSalle’s Theorem (La Salle & Lefschetz, 1961)
and conclude from (37) that dr and yr tend to zero as t — oo.
The residual dynamics are obtained imposing to the system the
restrictions dr = 0,yr = 0 and ko = 0. First, note that with ko = 0
the dynamics reduce to Xr. Second, yr = 0 implies v = 0 and
& = 0, consequently £ = £. Furthermore, from the equation of £,
we have

0=£&=VC'[FVH —gVH:()]. (38)
Now, recall that the dissipation is
0 =dr = —VH{ FyVH;

I VH
_ (Vi vH) (V CT) F —-g) (vm)
= (VH" + VH] VCT)(FVH — gVH,), (39)
which combined with (38) yields,

VH' [F®)VH(x) — g(x)VH:(§)] = 0. (40)

The proof of (iii) is completed noting that C(x) — & = ko and
evaluating VH, at &.

The proof of (iv) is a direct consequence of the celebrated
theorem by Barbashin and Krasovskii (1952). O

4.3. Example (continued)

We now apply adaptive Cbl to the example. Except for points
on the hyperbola x;x, = 1, the matrix

T
(-6

is non-singular, so the orbits of the residual dynamics are confined
to equilibrium points x € & satisfying

Fx)VH(x) —g(x)(C(X) — C(x,) + u,) = 0.

Forall x] < —% the only solutions of the above equation are® X' =
col(x1,, X2,,) and X' = col(x1, + 411"%*’ 0). When x;x, = 1, the vector

col(x,, —1) is an eigenvector associated to the zero eigenvalue of
the matrix (41), so points X satisfying

FRVH® —g®(C® — C(x) +u.) = (fﬁ) v®

for some function ¥ : R? — R can also contain the orbits of the
residual dynamics. Since X;x; = 1 implies g (X)FX)VH(X) = 0
(see Appendix for details), then one obtains g+ (X)col(X,, —1) = 0.
The solution set of the previous equation is empty, which implies
that

1
Z = {col(xl*, X24), col (xl* + A—lxg*, 0)} .

Fig. 3 shows that now My and & intersect at the desired x,.
Convergence towards the desired value is achieved with the
adaptive scheme.

6 The details are not shown, but this fact can be verified by looking at the
discriminant of the resulting cubic polynomial.

1

L L 1 L y L | L | L | L L
-2 -1.5 -1 -0.5 T 0 0.5 1 1.5
1

Fig. 3. Level sets of W and invariant manifold My, all intersected with the planes
X2 = —1(above)and § = —% (below). Equilibrium set & and simulated response,

both projected into the planesx, = —1and £ = _%,

4.4. Controller damping injection Cbl

Another possible way to achieve convergence is to destroy
the invariance of the Casimirs, adding a damping injection to the
controller. The idea is to go back to the previous controller storage
function (27), that we repeat here for ease of reference

1
He(®) = 5 & =K Mu ]y . (42)

but add an extra virtual input w € R™ to the controller through
the interconnection, that is,

R LA I

The interconnected system takes the form

X 0
<§> = FTVHT +gTU + (I) w
Zrw 44
Tw Vo ngTVHT ( )
z=(0 I)Vw

where we have defined the corresponding conjugate output z.
Notice that, for all w # 0, the invariance of the manifolds .M, has

been destroyed because C—& = —w. However, the time derivative
of Wiis
W=—di+yjv+2z"w, (45)

so the new system is also cyclo-passive with the same storage
function W and port variables ((yr, z), (v, w)).

Proposition 6. Consider X1, with H. given by (42), with u, defined
in (7), v by (26) and

w=—Kyz, Ky=K, >0. (46)

(i) For any x, € &, the point (x,, 0) is a stable equilibrium if (28)
holds.

(ii) The orbits of the residual dynamics are confined to the set Z,, x
{& = 0}, where

T
Zw = {xl (glgT> [FVH — gu,| = 0} .
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— (2(8), ()| -

— W = const

Plane x5 = —1
L | | i |

Fig. 4. Level sets of W intersected with the planes x, = —1 (above)and £ = 0
(below). Equilibria locus &€ and simulated response, both projected into the planes
X, =—1and & =0.

(iii) Ifno trajectory x(t) can stay identically in Z.,, other than isolated
points, (x,, 0) is an asymptotically stable equilibrium. It will be
globally asymptotically stable if it is the only point in Z,, and if
W is radially unbounded.

Proof. Take W as a candidate Lyapunov function. Eq. (45), (26)
and (46) imply that it is a Lyapunov function and (i) follows.
Applying LaSalle’s Theorem gives that dr, yr and z tend to zero
ast — oo. The residual dynamics are those of Xr,, with the
restrictions dr = 0, yr = 0 and z = 0. From the latter it follows
that Ve W = 0, whichimplies VH. = V& (C(x)—&) = u,, whichin
turn implies & = 0. From the equation ofé, withé =v=w =0,
weget0 = & = VCT(x)[FX)VH(x) —g(®)u,] = 0, which is
the second row in Z,,. From this equation and (39) one is lead to
conclude that VHT (x) [F(x)VH(x) — g(x)u,] = 0, that gives the
first row, and completes the proof of (ii).
Point (iii) follows from Barbashin-Krasovskii's Theorem. [

4.5. Example (continued)

We now apply controller damping injection Cbl to the system
of the example. The analysis follows along the same lines as in the
adaptive Cbl scenario. In this case Z,, = {col(X1., X2.), col(X1., 0)}.
Fig. 4 shows the trajectories of the system for K, = 2. These are no
longer restricted to My. Again, convergence to x, is achieved.

Simulations show that for the initial condition (xq, &) =
(—=1/2,1/2, 0), convergence of the state of X7 is towards (xq, +
xﬁ*/4, 0) = (—3/4, 0) for the adaptive Cbl and towards (x1,, 0) =
(—1,0) for the controller damping injection Cbl. Indeed, since
Z and Z,, contain more than one point, stability is global but
convergence is not. Notice, however, that in the controller damping
injection scenario, the exact value of the unwanted equilibrium is
known. This, together with the fact that the Lyapunov function W
is non-decreasing over time, allows to obtain an estimate of the
region of attraction: the open ball centered at col(xy,, X2., 0) and
of radius ||col(x14, X24, 0) — col(X14, 0, 0)|| = |x2.].

5. Conclusions

We have shown that the existence of the Casimir functions,
inherent in the Cbl design methodology, present an obstacle for
asymptotic convergence of the state towards a desired equilibrium.
In order to surmount this obstacle, two variations of the method
have been developed. Paradoxically, once the modified versions

are used, the same Casimir functions narrow the possible limit
sets, thus contributing to the desired asymptotic behavior. The
Casimir functions also simplify the analysis of such limit sets, as
they provide m algebraic constraints that, as shown in the example,
can sometimes obviate the need to differentiate the output to
obtain the residual dynamics. Interestingly, each method generates
a different limit set.

It is clear that the selection of a quadratic function for H,
renders the controller linear, more precisely, a linear PI (for a
suitably defined plant output). The results in the paper may
be then interpreted as identification of a class of nonlinear PH
systems that are asymptotically stabilizable via linear PI. Although
the choice of a linear PI may be restrictive for some academic
examples, it is certainly a family of controllers of practical interest.
It should be, furthermore, pointed out that the general framework
of Cbl does not impose this restriction on H,, and it is made here
to obtain easily interpretable general results. We are currently
exploring other controller structures for which similar results can
be established.

Appendix. The set &

Consider an arbitrary point (%, £) € &. From Ortega et al. (2008,
Lemma 2), we know that the conditions that define the set (23) are
equivalent to

gt FRFE)VHE) =0
VHc(€) = g" ®)F(R)VH ().

(A.1a)
(A.1b)

32
From (A.1a) we get that %2 (1 — X1x3) = 0.Inother words, if a given
X isin &, then it must satisfy

X € {(X1,1/%1) [ X1 # 0} U {(X1,0) | X1 € R}. (A2)
Note that
s o GR—X)E - ) +X
grRFROVHR) = 2222
(X2 - 5) + X
hence, because of (A.2),
LG Tk ik B
FRFROVH® =1 H @1t x
—X1 X =0.
In any case, g"(X)FX)VH(X) = —X;. Finally, from (A.1b) and
the fact that u, = —1 we get that VH.(§) = £ + 1 = —X; or,
equivalently, § = —x; — 1, s0
_ 1 _
€ = {col (xl, —, =X — l) | X1 # 0}
X1
U {COI()_(], 0, —}_(1 — 1) | )_(] (S R} . (A3)
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