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Optimal Control Problems I 
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Abstract. It is the purpose of this paper to develop and present new 
approaches to optimal control problems for which the state evolution 
equation is.nonlinear. For bilinear systems in which the evolution 
equation is right invariant, it is possible to use ideas from differential 
geometry and Lie theory to obtain explicit closed-form solutions. 
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1. Introduction 

The optimization theory for dynamical systems with linear state 
evolution equation and quadratic performance measure is well understood. 
Results for optimization problems involving nonlinear evolution equations, 
however, are not nearly so extensive. Traditional approaches to such 
problems have involved linearization and numerical techniques. It is the 
purpose of this paper to examine ways in which the structure intrinsic to a 
nonlinear problem may be used to find a solution. For right-invariant 
systems evolving on matrix Lie groups, many optimization problems admit 
closed-form analytic solutions of simplicity comparable to the l inear- 
quadratic case. 

There  has been relatively little reported in the literature concerning 
explicit determination of optimal controls for nonlinear problems. Notable 
exceptions include work by Brockett  (Ref. 1), Baillieul (Refs. 2 and 3), and 
Jacobson (Ref. 4). The work of Brockett  and Baillieul is extended in the 
present paper, In proving Theorem 3.2, we apply the maximum principle in 
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much the same way that Brockett  has, but our results are stronger in that 
we go on to establish the normality (see Section 3) of certain classes of 
problems.  Brocket t  also considers the general fixed endpoint problem on 
SO (n) involving the state evolution equation 

(d/ d t )X  (t) = n ( t ) X  (t) 

and performance  measure 
t *  T 

= - J0 tr(K-lf~)2 dt, 7/ 

where K is a matrix of weights. To solve this problem, a variational 
argument  is used to show that the optimal f~(t) satisfies 

(d/dOn(t) = [ n K a ,  K-11. 

We have generalized this to a wider class of systems, performance 
measures,  and state spaces. 

In Section 2, we assume our performance measure is of the form 

. T  

77= 1 L(x, 2)dt. 
0 

If L ~  (or equivalently L~x -1) is positive definite, this is called a regular 
problem in the calculus of variations, and necessary conditions for regular 
problems are obtained in Theorem 2.1. Theorem 2.2 shows that certain 
constants of motion exist for regular problems,  and Example  2.1 shows 
that some classical results in rigid body dynamics may be deduced from 
this. Later,  we use penalty function techniques and the maximum principle 
to treat  the more  general case where L ~  1 is only assumed to be nonneg- 
ative definite, i.e., L~x has become infinite in certain directions. The final 
section of this paper  is devoted to methods for obtaining explicit closed- 
form functions. 

It is assumed that the reader  is familiar with the e lementary aspects of 
the theory of Lie groups and Lie algebras (Refs. 5-7). We shall briefly 
review the role that this theory plays in the analysis of systems of the form 

(d/dt)X(t)=(a+ ui(t B,)X(t , 
i = I  

where A, B1 . . . . .  B~ are constant n x n matrices, X(t) is a t ime-varying 
n x n matrix, and the ui(.  )'s are functions which belong to some admis- 
sible class ~ ,  such as measureable  functions on [0, T]. Systems of this type 
are called right invariant, since, if any solution X(t) is multiplied on the 
right by a constant matrix M, the product  X(t). M also satisfies (1). 
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Let {A, B1 . . . .  , B m } L A  denote the Lie algebra generated by the 
matrices A, B1 . . . . .  B,~; and, for any Lie algebra g, let {exp g}6 denote the 
group obtained by taking all finite products of exponentials of elements of 
g. See Ref. 8 for the basic facts concerning these constructions. It is welI 
known that, if 

is an element of 

x ( o )  = x 0  

G = {exp{A, B1 . . . . . .  Bm}LA}C,, 

then X(t) ,  for any admissible controls ui(t), i = t . . . . .  m, wilt lie in G for 
all t ~ 0 .  

Optimization Problem. Suppose that G is a matrix Lie group with 
corresponding matrix Lie algebra g. Consider the system defined on G by 
(1), where A, B1 . . . . .  Bm ~9. Given an admissible class ~ of control 
functions, we wish to find ul . . . .  , u,~ in fl  which steer the state of (1) from 
I ~ G  (the identity) to X ~ G  in T units of time in such a way as to 
minimize the cost functional 

. T  

, ='| ~ qi, ui(t)ui(t)dt, (2) 
ao i,./= 1 

where 

Q = (qij) 

is a symmetric, positive-definite matrix. 

Remark 1.1. An alternative statement of this problem might replace 
the initial condition 

with 

x ( o )  = i 

X(0)  = 320 c G. 

However,  because (1) is right invariant, no generality is gained by doing 
this. 

Remark 1.2. It will be assumed throughout this paper that the 
matrices B/appear ing in (1) are linearly independent.  In addition, it will be 
convenient to assume they are orthonormal with respect to the usual 
matrix inner product 

(X, Y) : t r ( X .  'Y). 
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Here,  'Y denotes the transpose of Y. In this case, we may define a linear 
transformation 

() : ho-> ho 

(ho is the linear span of the Bi's) by 

q,B. 
i=1 

Then, (2) may be rendered as 

Remark 1.3. Although we state all our results in terms of subgroups 
of GL(n, R), they are easily extended to the real forms of complex groups. 
Indeed, if 

g C_ ill(n, ~), 

define the realification of g as the image of the Lie algebra homomorphism 

r im2] 
B - ~ L _ I m B  Re " 

If the matrices A, B 1  . . . . .  Bm have complex entries, we may rewrite (1) in 
terms of the above realification mapping (see Example 4.1). 

Remark 1.4. Since the goal of this paper is the development of 
necessary conditions, the existence of optimal controls must be proved. 
Standard results in existence theory (see, e.g., Ref. 6, p. 411) cover all cases 
treated in this paper. 

2. Calculus of Variations 

Specializir~g the results of the calculus of variations to problems 
defined on Lie groups is relatively straightforward and has been carried out 
along slightly different lines by Hermann (Ref. 10) and Brockett  (Ref. 1); 
the latter work has been detailed in Ref. 2. We shall draw on the results of 
Brockett  and Baillieul to solve our optimization problem. In order to use 
the calculus of variations, we assume that the Bi in (1) span g. In the light of 
the assumptions set out in Section 1, this makes {B1 . . . . .  Bm}.a basis for g. 
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Theorem 2.1. Consider the system (1) under the above hypothesis, 
and let R be a nonsingular matrix either symmetric or skew-symmetric 
such that 

R 2= ±L 

Suppose that 

Let 

9 = {C e gt(n, 1~): ~CR + RC = 0}. 

X, e G = {exp g}a 

and T > 0 be given. Then, the following results hold: 
(i) there exists an optimal control matrix 

U°(t) = ~ u°(t)B, 
i = l  

which steers (1) from I at t = 0 to X1 at t = T such that (2) is minimized; 
(ii) the optimal control matrix 

U°(t) = ~ u°(t)B, 
i = 1  

satisfies the differential equation 

(d/dt)[i~=lui(t)Bi]=O-t([O(~,ui(t)Bi), ~A+Y~ui(t)tBi]), (3) 

where [ - ,  • ] denotes the Lie bracket of matrices 

[X, Y] = X Y -  YX. 

Proof. (i) follows from standard results on the controllability of 
bilinear systems (Ref. 8) and the results on existence of optimal controls 
cited in the introduction. 

From Theorem 1 in Ref. 2, we know that the optimal trajectory must 
satisfy the differential equation 

P{(~7~L - (d/ dt)V ,L )~X} = O, (4) 

where 

L=(XX ' -A,  O(XX-'-A)), 

VxL and (d/dt)VxL are vector fields on GL(n, ~) given in local coordinates 
by 

V~L = aL/Ox,~, (d/&)V,L = (d /&)Oi /a~, j ) ,  
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and P is the orthogonal projection of gl(n, ~) onto g. For the present case, 
it is easy to check that 

VxL= 20(~ u,(t)B~) ('A + ~ u~(t)'B~)RX(tfR, 

(d/dt)~z~t = 2{ 0(E (d~i/dt)Bi)-O(Z ui(t)Bi) (*A+ ~ ui(t)Bi) }*RX(t)R, 
and 

-=g(C-R C R), P(C) 1 ,~ 
whence the theorem follows. 

We shall call Eq. (3) the Euler-Lagrange equation for our optimiza- 
tion problem. 

Theorem 2.2. 
is self-contragredient, i.e., 

A = -'A, Bi = - t B i .  

If 

u ° ( 0  = E u o (t)B, 

is an optimal control, then 

( a  + U°(t), Q(A + U°(t)))=-KI, 
(()(U°(t)), ()(U°(t))) =- K2, 

where K~ is a constant positive real number independent of t. 

Suppose that the collection of matrices A, B1 . . . . . .  Bm 

(5) 

(6) 

Proof.  If A . . . . .  Bm are self-contragredient, then (4) may be rewrit- 
ten as 

(d/dt)O(~, u ° (t)Bi) = [ A +  ~, u ° (t)Bi, O( ~ u ° (t)Bi) ]. 

Hence, 

(d/dt)(A+ ~.u°(t)B,, O(A+~u°(t)Bi)) 

=2([A+2u°(t)Bi],[a+ 2 u°(t)Bi, ()( ~ u°(t)Bi)]) 

= 2 ( [ A +  ~u°(t)B~,a+ ~u°(t)B,], (~(~u°(t)Bi)), 

which follows since 

(X, [ Y, Z])  = ([X, Y], Z )  for all X, Y, Z e g 



JOTA: VOL. 25, NO. 4, AUGUST 1978 525 

if 9 is self-contragredient. This last expression is identically zero. Expres- 
sion (6) is proved in the same way. 

Viewing 9 as a finite-dimensional vector space and writing (5) and (6) 
out in terms of coordinates, Theorem 2.2 says that the optimal controls for 
our  problem lie on the intersection of two quadratic hypersurfaces in g. 

Example 2.1. Theorems 2.1 and 2.2 are of special interest in the case 
that 

Consider the system 

o = s o ( 3 ) .  

( d / d t ) X ( t )  = -u3(t) 0 u,~t) JX(t) 
u~(t) -.~(t) 

and the performance criterion 

.T t 

| [qlul( t)2 , 2 2 = +q2u2~,t) +q3u3(t)  ] dr, ~7 
ao 

qi >0 .  

From Theorem 2.1, we find that optimal controls steering this system 
between fixed endpoints satisfy 

q l ( d u l / d t )  = (q2-  q3)u2u3, 

qz (du2 /d t )  = (q3-q l )u tu3 ,  

q3(du3/dt )  = (ql - q2)utu2. 

(7) 

Interpreting the Ui'S as angular velocities and the qi's as moments of inertia 
about the principal axes, the optimization problem corresponds to the 
problem in classical mechanics of finding the equations of motion of a 
rotating rigid body in the absence of external torques. Here,  r / is  the action, 
(7) are Euler  equations, and (5}-(6) show that kinetic energy and magni- 
tude of angular momentum are conserved. 

Unfortunately,  if we do not assume that the Bi's span the Lie algebra 
g, then (3) is no longer a necessary condition for the optimal control. 
Nevertheless, techniques exist which allow us to develop the requisite 
necessary condition, even when the Bi's do not span. One approach is the 
maximum principle of the next section. Alternatively, we can use a limiting 
argument coupled with (3). Associated to the optimization problem of 
Section 1, define the following auxiliary problems. 
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l-Auxiliary Problems. Let G, g be as in the previous sections, and 
let h o C g  be the linear span of the Bi's appearing in (1). In general, ho is a 
proper  subspace of g. Consider the system 

(d /d t )X( t )  = (A + U(t))X(t ) ,  

where A, U(t)~  g and for which we have defined the cost functional 

T P 

: [ (U(t ) ,  Oh(U(t))) dt, ~Th 
Jo 

where 

Oh : g - ' 9  

is the linear mapping defined on g by 

(8) 

AH if H ~ hl = h~, 
Oh(H)= 

0 ( H )  if H ~ ho, 

where 0 is the analogous linear mapping 

0 : ho ~ ho 

associated with the performance  measure for our pr imary optimization 
problem. It  is desired to find an L2[0, T] control matrix Uh (t) taking values 
in g which steers (8) f rom 

l e G  at t = 0  

to 

X I ~ G  at t =  T, 

so as to minimize r/h. We shall assume for the purpose of the next theorem 
that all Lie groups and algebras under discussion are self-contragredient,  
i.e., 

C = - t C  for all C ~ g 

and 

X = 'X -1 for all X ~ G. 

Theorem 2.3. Together  with this assumption on G and g, assume 
that (1) is controllable on G, in the sense that, given T > O  and any 
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Xo, Xt ~ G, there exists a control matrix U(t) taking values in ho whose 
entries are L2[0, T] and which steers (1) from Xo at time t = 0 to X1 time 
t = 7". Then, the following results hold: 

(i) there is at least one control 

U°(t) = ~ u°(t)Bi 
i= I  

which solves the primary problem as stated on page 521 ; 
(ii) there is a sequence A i ~ oe as/-~oe such that the solutions U ~, to 

the Aj-auxiliary problems converge a.e. on [0, T] to an optimal control 
solving the primary problem and such that the corresponding trajectories 
XA~ converge uniformly on [0, T] to an optimal trajectory; moreover,  if U ° 
is unique, then, for any suct~ sequence of h i, the U Aj converge a.e. to U ° 
and the Xaj converge uniformly to the corresponding optimal trajectory. 

The proof of this theorem is too lengthy to be included here, but may 
be found in Ref. 3. 

3. Maximum Principle 

A more direct approach to the optimization problem of Section 1 is to 
invoke the high-order maximum principle developed by Krener  (see Ref. 
11). The statement of the high-order maximum principle requires the 
definition of a control variation. Let X(t, U( .  ), Z )  denote  the trajectory 
generated via (1) by the control 

u(-)= ~ u,(. )B; 
i=1 

and initiating at the point Z at time t = O. Let  us assume in this section that 
admissible controls ui(" ) are pieeewise C ° on [0, T]. 

Definition 3.1. (i) Consider the trajectory X(t, U°( • ) ,Xo) 
generated by U°( • ) and initiating at Xo. A control variation to the control 
U°( . ) at X(h)  is given by the pair (qbs, Cs), where 

,/,~(x(h), u °) = x ( p k ( s ) ,  u~( • ), X(p~_~(s), u~-~( .  ) . . . . .  
k 

X(p~(s) ,  g~ (  • ), x ( t ~ -  y: p,(s), u ° (  • ), Xo) ) . .  .), 
i=1 
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and 

I 
t 

qbs(U°(tl)) = (Uk(o'), 0(Uk(o-))) d o "  

t - P.,, ( s )  

f tl--Pk(S) 
+ (uk-l(o ' ) ,  ()(Uk-l(o'))) do- 

dtl--Pk(S)--pk--l(S) 

f q - P k  (s) . . . . .  P2(s) 

4 - . . . +  (Ul(o'), ()(Ul(o-))) do" 
at l -pk (s )  . . . . .  pl(s)  

~t l - -Pk(S ) . . . . .  pl($) 

+ Jo (u°(~), O(u°(~))) d~. 

The quantities U°( • ), UI(  • ) , . . . ,  Uk( " ) are control matrices 

m 
UJ( • )=  E u~(" )B,, 

i=1 

and the pi(" ) are polynomials in s satisfying 

M0) = 0 

and 

pi (s) >- 0 for small s i> 0. 

(ii) A control variation is said to be of order h at X( t l )  if there exists 
e > 0 such that 

(d/dsJ)s=o~s(g(t) ,  U°(t)) = O, (dJ/dsJ)s=o4)~(U°(t)) = O, 

for 

j = l  . . . . .  h - 1  and [ t - t l l < e .  

For the optimization problem presented in Section 1, the high-order 
maximum principle asserts that, if 

u°(  • )= ~ u°( • )B, 
i=1 

is an optimal control and Xo(" ) is the corresponding trajectory satisfying 
(1), there is a constant ~o t> 0 and a matrix ~( t )  satisfying 

(d /d t )~( t )  = - ( A  + u ° (t)tB,)~(t), (9) 

such that the Hamiltonian 

A + Y'. uiBi Xo(t))+lOo ~, qijuiuj H(q~, Oo, Xo, U)=(qr(t), ( ) (10) 
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is minimized with respect to U by 

u°(t) = E u°(t)B,.  

Moreover,  for every control variation (qbs, 4~s) to U°( • ) at Xo(t) which is of 
order h, 

(~(t), (dh/dsh)s=odPs(Xo(t), U°(t)))+½4to(dh/dsh),=oO,(U°(t)) >i 0; (11) 

finally, if 

4t0 = O, 

then 

Recall that 

P(~(t)'Xo(t)) ~ 0 for any t in [0, T]. 

P" gl(n, R)-~g 

is the orthogonal projection with respect to our matrix inner product 
( . , . ) .  

Remark 3.1. If U is any point in h0 (the linear span of the Bi's), 
then, by using the variation 

• s(Xo(t), u° ( t ) )=X(s ,  u, x ( t - s ,  u°(  • ),x)), 

the fact that the Hamiltonian is minimized by U°( • ) is seen to follow as a 
special case of (11). 

The maximum principle specialized to optimization problems on 
matrix Lie groups leads to the following result. 

Theorem 3.1. Suppose that (1) evolves on a matrix Lie group with 
corresponding Lie algebra g. Let 

~o(. )= ~ u o(. )~ 
i = 1  

be an optimal control and X0(" ) the optimal trajectory corresponding to 
U°( • ) via (1). Then, there exists a constant M ~ g and a nonnegative real 
number ¢Jo, not both zero, such that 

H(M, 4to, U, Xo(,)) = (M, Xo(t)-l(a + ~ uiBi)Xo(t))+ ½0o~ qquiui 

is minimized with respect to 

U = Z u~B~ 
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by U°(t). Moreover ,  for every control variation (qbs, ¢ , )  to U°( • ) at Xo(t) 
which is of order h, 

(M, Xo(t) -1 (d h/ds h), = o(])s (So(t), U°(t))) + ½0o(d a/ds h), =o¢, (U°(t)) >I O. 
(12)  

Proof. 

Since 

From (1), it follows that 

(d/ dt)'Xo(t )-~ = -[t  A + i~ ~ u° (t )'Bi]~Xo(t ) -~. 

'Xo(0)  -1 = I, 

there exists some constant matrix M such that 

xP(t) = 'Xo(t)-lM. 

The Hamil tonian in (10) may thus be rewritten as 

which may further be rewritten as 

The theorem follows directly from the maximum principle, once we es- 
tablish the claim that M e g. But this is evidently the case, since the value of 
H can in no way be influenced by any component  of M lying in g ' .  

Definition 3.2. Problems for which it is assured that 

6 0 ~ 0  

are called normal. 
It  is clear that, for normal problems,  we may normalize ~b0 to be 1, and 

optimal  controls may be found by differentiating H with respect to ui for 
i = 1, 2 . . . . .  m and setting the result equal to zero. From the preceding 
theorem,  we obtain 

u ° ( t ) =  - ~ qii(M, Xo(t)-lBiXo(t)), 
i=1 

where 
(qii) = Q-1. 
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Unfortunately, not-all of our optimization problems are normal, as may be 
seen from the following example where the state space is SO(3). 

Example 3.1. It is desired to steer the system 

(d /d t )X( t )= 1 0 u t X( t )  

-u ( t )  

from 

ilO;1 0 1 

0 0 l j  
at time t = 0 

to 

X1 • 0 

0 
at time t = zr/2, 

so as to minimize 
(, rr /2 

r t = |  u(t) 2dt. 

The optimal control is obviously given by 

u(t)-=-O, 

and we let Xo(t) be the corresponding trajectory. By Theorem 3.1, there is 
a constant matrix 

M =  
I 0 rn3 ! - -m2  

-m3 0 ml 

m2 - - m l  0 

and real 

not both zero, such that 

;:111t H(M, 4,o, u, Xo(t))= Xo(t) -~ 1 0 Xo(t) +½$oU ~ 

L o - .  
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is minimized with respect to u by the optimal control. Taking 

m l =  m z =  too= 0, m 3 = a ~ 0 ,  

we have 

H - 2 a ,  

and we see this problem is not normal. 
To this author's knowledge, there is no exact characterization of 

normality, although it is discussed at some length in Ref. 12. The following 
theorems present some useful sufficient conditions. 

Theorem 3.2. Consider the system (1) evolving on a matrix Lie 
group G with corresponding Lie algebra g. If X o ( t )  is the optimal trajectory 
for the problem given in Section 1, and if X o ( t ) - l B i X o ( t )  does not vanish 
identically on any subspace of g for all i = 1 . . . . .  m, then the problem is 
normal. 

ProoL Suppose that the problem is not normal, i.e., 

4,0=0. 

Then,  differentiating the Hamiltonian with respect to ui and setting the 
result equal to zero yields 

(M,  X o ( t ) - I B i X o ( t ) )  - O, i = 1 . . . . .  m.  

Since 

implies that 

tOo--- 0 

M ~ O ,  

the above shows that X o ( t ) - l B i X o ( t )  vanishes on the ray in g spanned by M, 
in violation of the hypothesis of the theorem. 

Example 3.2. Suppose that in (1) the matrices A, B1 . . . . .  B,~ are all 
(n + 1 ) ×  (n + 1) and 

A =  O '  

where .,~ is an n x n constant matrix, 



JOTA: VOL. 25, NO. 4, AUGUST I978 533 

where bi is an n-dimensional column vector, so that the system evolves on 
Aft(n), the group of affine transformations of R ". By making the time- 
varying change of coordinates 

Z(t) = exp(-At)X(t), 

we find that (1) in fact evolves on the subgroup 

• 71 0 . . .  
t 0  1 . . .  

Go = ,  I 
[ ~  0 . . .  

O , . , 

0 X1  

0 x2 

• ~ :xi~lt~ l , 
1 x ,  

0 j 

which is the image of the canonical embedding of ~" into Aft(n)• The 
corresponding subalgebra is 

-0 

0 

go = 

0 

0 

. .  0 

. .  0 

. . .  0 

. . •  0 

Y~I: yi 

oj 
Equation (1) thus corresponds to the evolution equation of the system 

dx/dt = Ax + Bu, 

where B is the n x n matrix whose ith column is b~. It is well known that our 
optimization problem will be normal if the corresponding linear system is 
controllable. This may be seen using Theorem 3.2 as follows. If 
Xo(t)-lB~Xo(t) were to vanish identically on any subspace of the subalge- 
bra 90, then so would all derivatives of Xo(t)-lBiXo(t)• It is a straightfor- 
ward calculation to show that 

(dk/dtk)Xo(t)-IB~Xo(t) = ( -  1)kX0(t)-l[ad~+z ~o(oB~(Bi)JXo(t) 

= [~ (--1)kexp~At)Akbi], 
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where we recall that, for any C, D ~ g, 

ad~(D) = D, a d ~ D )  = [C, D],  

ad~(D) = [C, adkc I(D)] for k ~> 2, 

a positive integer. If, for i =  l . . . . .  m, these derivatives vanish for k = 
0, 1, 2 . . . .  on any subspace of go, then (/3, A~B . . . . .  A~-~B) cannot have 
rank n. Hence,  in this case, the standard controllability condition for linear 
systems would not be met, and therefore controllability implies normality. 

The following sufficient condition for normality will prove useful in the 
next section. 

Theorem 3.3. (Ref, 13). Suppose that (1) evolves on a matrix Lie 
group G with corresponding Lie algebra g- Let  ho be the linear subspace of 
9 spanned by B1 . . . . .  Bin, and suppose that 

9 C_ho+[h0, ho], 

i.e., any element in g may be written as a linear combination of the Bi's and 
the first-order brackets [Bi, Bi]. For such a system, the optimization prob- 
lem set out in Section 1 is normal. 

Proof.  Assume, contrary to the conclusion of the theorem, that 

0o = 0. 

Then, the Hamiltonian defined in Theorem 3.1 is 

H(~I, U, Xo(t))= (M, Xo(t)- l (A + ~ uiB,)Xo(t)). 

Since this is to be minimized with respect to U, we set the partial deriva- 
tives 

OH/Ou, = (M, Xo(t)-lBiXo(t)) =- O, i = 1 . . . .  , m. (13) 

Also from Theorem 3.1, we know that, for any control variation (qb, q~) of 
order  h to the optimal control, 

(M, Xo(t)-l(dh/dsh)s=odPs(Xo(t), U°(t))) >i O. 

Note that, since ~P0 = 0, b does not enter. In particular, let tl 6 (0, T), and 
consider 

a,s(Xo(tl), u°(tl)) 
=X(s,  V( .  ), X(s, Ui( • ), X(s, Ui( • ), X(s, V(" ), Xo( t l -  4s))))), 
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where U~( • ) is the constant control matrix Bi, U i (  " ) is 
control matrix Bi, and V( .  ) is the control matrix 

V ( t )  = 2 V ° ( h  - 4t) - ~B, - ½B i. 

To see that this is a second-order control variation, define 

(I)(S0, S1, $2, S3, $4) 

and let 

while 

Then, 

the constant 

= X(sl ,  v ( .  ), X(s~, u ' ( .  ), X(s3, U ( .  ), X(s, ,  v ( .  ), Xos0))))), 

si = si(s) = s, i = 1 ,2 ,  3, 4, 

SO = So(S)= t l - -4S .  

4 
(d~dds),=o = E 

i=0 

Also, 

4 
(d2eb,/ ds2),=o = 

id=O 

( ( o ¢ / o s ~ ) .  ( d s , / d s ) ) ,  = o = O. 

( (o~eo /os las3  • ( d s , / d s ) .  ( d s / d s ) L = o  

4 
= E  

i=0 
( 02 dp / Os ~ ) . [ ( dsi/  ds ),=o ] 2 

+2 E ((s2~/as, asj) • (dsdds). (ds/ds))s=o 
O~i~,~j~4 

= [A +B, ,  A +Bi ]Xo( t l  ). 

Next, consider the variation 

dPs (Xo(t l ) ,  U°(tl)) 

"~'X(s, W ( .  ), g ( s , - u i (  • ), X ( s , - U ] (  • ), X ( s ,  ~/V(. ), X o ( t  ! - 4 s ) ) ) ) ) .  

where U i and U ~ are as above and W( .  ) is the control matrix 

W ( t )  = 2U°(q  -4 t )+½Bi  + ½Bj. 

Repeating the above calculations, we find this is also a second-order 
variation and 

(d2dps/ ds2)s=o = [A - B i ,  A - B i ] X o ( t l  ). 
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Now, since 

(M, Xo(tO-l[A + Bi, A + Bj]Xo(tO) >~O, 

(Mr, Xo(tl) - I [ A  - B , ,  A - Bi]Xo(tO) >! 0, 

by adding these inequalities, we find that 

(M, Xo(tl)-~[Bi, Bi]Xo(h)) >I O. 

But it is clear that, by reversing the order of the controls U i and U i in the 
above variations, it would also be possible to conclude that 

(M, Xo(tl)-~[Bj, B~]Xo(tO) >i O. 

Hence,  for all pairs i,/', this inequality sign may be replaced by an equality 
sign. But this fact together with (13) implies that M is orthogonal to all 
elements in g, and this is only possible if 

A4=0 .  

By Theorem 3.1, it is not possible for both 4So and M to be zero, and this 
contradiction proves the theorem. 

We shall assume for the remainder of this paper that 

g = {A, B1, .  • . ,  Bm}LA 

is a subalgebra of 

{C c gl(n, ~) : 'CR + R C  = 0}, 

where R is some nonsingular symmetric or skew-symmetric matrix such 
that 

R 2= + L  

Moreover,  let us suppose that g is closed under matrix transposition, i.e., 
C ~ g implies 

t C e g .  

With 

hoCg  

denoting the linear span of B1 . . . . .  Bin, let 

O : ho--, ho 

be the linear operator  such that 

qu = (B,, ()(B,)). 
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Extend B1 . . . . .  B,~ to an orthonormal (with respect to ( . , - ) )  basis 
B1 . . . .  Bin, Bm+l . . . . .  B,, for g. It is evident that 'BI . . . . .  '/3, is also an 
or thonormal  basis. The next theorem is a major  extension of the results 
reported in Ref. 1 and Ref. 4. 

Theorem 3.4. Together  with the assumptions and notation set out in 
the preceding paragraph, make the additional assumption that the opti- 
mization problem of Section 1 is normal. Let 

u ° ( 0  = .?(0B,  
i = I  

be an optimal control, and let Xo(t) be the corresponding optimal tra- 
jectory. There exists a constant M E g (the negative transpose of the M in 
Theorem 3.1) and differentiable functions v'm+l( • ) . . . . .  v , ( .  ) such that 

Xo(t)MXo(t)--' ='{ (~( ~ u°i (t)Bi) } + L vi(t)~Bi; (14) 
" i = 1  i = r a + l  

moreover,  the differential equation 

= [() ~ ui(t)Bi+ L ui(t)Bi, 'A + ,~ ui(t)'Bi] (15) 
i=1 i=m+l  i=I  

is satisfied by 

and 

ui(t)=u~(t), i= 1 . . . . .  m, 

u,(t)=vi(t), i = m + l , . . . , p .  

Proof. It has been seen that, under the assumption of normality, 
Theorem 3.2 implies the existence of an M0 ~ g such that 

(Mo,  Xo( t ) - 'B iXo( t )>  = - ~ q#u ° (t). 
/ '= i  

In the light of the special structure that we have assumed for g, the 
left-hand side of this equation may be rewritten as 

(Xo(t)tMoSo(t) -~, 'B,>. 
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Hence, 

where 

qtiu ° ( t )  = ( X o ( t ) M X o ( t )  -1, tBi) , 
i=1 

i = l , . . . , m ,  

M ~ - t ~ 4  O, 

Having chosen B,.÷t . . . . .  B~ as above, define 

Vi(t) = ( X o ( t ) M X o ( t )  -1, t B i )  , i = m + 1 . . . . .  u. 

Then, comparing the inner products of the right-hand and left-hand sides 
of (14) with tB1 . . . . .  tB~ successively, (14) follows. 

Equation (15) is a straightforward calculation using (14). 
In the case that the Bi span g, Eq. (15) reduces to (4). We shall also 

refer to (15) as the E u l e r - L a g r a n g e  equa t ion  for the optimal control. 

4. Solutions to the Euler-Lagrange Equation 

In this section, we shall consider systems of the form (1) which evolve 
on a matrix Lie group G with corresponding Lie algebra g and for which 

9Cho+[ho ,  ho], 

where ho is the linear span of the Bi's. By Theorem 3.3, the optimization 
problem for such a system is normal. It is therefore possible to compute the 
optimal control by solving the differential equation (15). This 
unfortunately is not a trivial matter in general. Example 2.1 with 

q l ~ q 2 ~ q 3 ~ q l  

presents a simple case in which it is known that elliptic functions must be 
introduced to solve the Euler-Lagrange equation. Nevertheless, there are 
a number of cases in which (15) may be solved easily in terms of elemen- 
tary functions. 

Let us assume that the collection of matrices A, B1 . . . .  ,Bm is self- 
contragredient, i.e., 

A = - ' A ,  B i  = - t B i .  

As above, let Bm+~ . . . . .  B~ be chosen so that the B~ . . . . .  B~ form an 
orthonormal basis for g. Suppose that g has an orthogonal direct sum 
decomposition 

g =  k o O k l O .  • " O k r G k r + l G "  " .f f3ks, 
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such that, for i = 0, 1 , . . . ,  r, ki is a subspace and, for i = r +  1 , . . . ,  s, ki is a 
subalgebra. Moreover ,  suppose that 

[ki, k j =  0 for i # j ,  r + l < ~ i , j < ~ s ,  

kiC__[kr, kr], i = r + l  . . . . .  s, 

ki C_ [ki-1, ki-J, i : 1 . . . . .  r. 

Finally, let us assume that [k;, kj] C_ k~ for 0 ~< i < j  ~< r. As usual Pi : g -> ki 
denotes the orthogonal projection. 

L e m m a 4 . 1 .  F o r i = 0  . . . . .  r a n d j - - r + l , . , . , s ,  

[k. ~j] _c k~. 

Proof. 

Suppose that 

where 

For any X, Y, Z ~ g, 

([X, Y], Z) = (X, [ Y, Z]). (16) 

X ~ kl, Y ~ k i, Z E kk, 

O ~ i < ~ r  and r + l < ~ j , k < ~ s .  

k=A 

the right-hand member  of (16) is zero, since ki and k i are assumed to be 
orthogonal.  If 

k~i, 
the right-hand side of (16) is zero, since 

[kk, kj] = 0 for k ~: j. 

Finally, if 

then 

O ~ k ~ r ,  k ¢ i ,  

[ Y , Z ] c k ~ ,  

and again the right-hand side of (16) vanishes, since ki and kk are orthog- 
onat. Thus, 

([X, Y], Z )  = 0 
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if 
Zekk 

and this proves the lemma. 

with k # i, 

Lemma 4.2. Let  

Then, 

0) 
(ii) 

X, Yek~+IG'" "Oks. 

[X, Pj(Y)]=[Pj(X),Pi(Y)], / = r + l  . . . . .  s; 

exp(X)-  Pi(Y). e x p ( - X ) =  exp(Pi(X)). Pi(Y). exp(-Pi(X)), 
j = r + l  . . . . .  s. 

Proof. 
first that 

(i) follows easily from Lemma 4.1. For the proof of (ii), note 

e x p ( X ) = e x p  E P,(X)= f i  exp(Pi(X)), 
" i = r + l  i = r + l  

which follows since 

[Pi(X), Pi(X)] = 0 for i # J. 

Then, we find that 

exp(Pi(X)). Pj(Y). exp(-PiQX)) 
~P;(Z), 

= [ exp(Pi(X)). Pi(Y). exp(-P~-(X)), 

and indeed 

fl exp(Pi(X)). Pi(Y). 
i = r + l  

i#j, 
i= j ,  

fi exp(-Pi(X)) 
i = r + l  

= exp(Pi(X)) .  Pi(Y). exp ( -P i (X)  ). 

This proves Lemma 4.2. 
Suppose that ho may be written with respect to our direct sum de- 

composition as 

h0 = k 0 e "  • "@kr-a@k,+l@" • "Oks-1. (17) 

The terms kr and ks have been omitted; the sum 

krQk~=h~. 

Assume that the linear mapping 

( ) : h o ~ h o  

appearing in (15) is of the special form 

(~(H)= AiH, 
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if H e k~; M is a nonzero real number. Let 

U ~ ( t )  = Pi[i~=l u,(0B;J, 
Then, taking 

i = 0 ,  1 , . . . , s .  

If 

Po(A)=P~(A) . . . . .  P r (A)=  0, 

this equation may be decoupled as follows: 

(d/dt)Ui(t)= [A, U-(t)], i = r +  1 . . . . .  s, 

S--1 

(d/dt)Ur(t)= [A, U~(t)]+ [i=~+ 1Ui(t), U~(/)], 

(d/dt)U~_l(t) = [A, Ur_~(t)] 

s--1 

] = r + l  

- a 721 [U,(t)+ U , ( t ) ,  U~-~(t)l, 
r--1 

(d/dt)U~(t)= [A, Ui(t)]+ E (Ai-Ai)/Ai[Us(t), U~(t)] 
j = i + l  

s - - I  

+ E (a , -a j ) /a , [u , ( t ) ,  g,(t)] 

-,~;~[U~(t)+U,(t), U,.(t)], i = 0 ,  1 . . . . .  r - 2 .  

& = a , = l ,  

(15) may be rewritten as 

ai(d/dt)Ui(t)= A+ Z Ui(t)+ Z Ui(t), &U~(t) . 
i=O i = 0  i=r+l  j~O 

By assumptions placed on the k~, this may be rewritten as 

,~i(d/dt)U,(t)= ~ a,[A, U~(t)]+ Z (&-a~)[U~(t), U~(t)] 
i = 0  i~O O ~ i < j ~ r - - 1  

r - - I  s - - I  

+ Z Y~ (,b-a,)[u~(t), bS(t)] 
i = 0  j = r + l  

r--1 

+ Y. [U,.(t), U,(t)+ U,(t)] 
i = 0  

s - t  

+ 2 [U/(t), U,(t)]. 
i=r+l  
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It is evident that certain of these equations may be explicitly solved. 
To begin, for i = r +  l , . . . ,  s, we have 

U~(t) = exp(At) • U~(O). exp(-At) .  

From this, the equation for Ur(t) becomes 

(d/ dt)U~(t)= [ A +exp(At)-  ( ~ i ~  U~(O)) . exp(-At), U~(t)], 

so that 

where 

U~(t) = exp(At) ,  exp(Clt) • /.7,(0). exp( -Cl t ) "  exp(-At) ,  

s - I  

c~= E u,(o). 
i=r+l 

The equation for Ur-l(t) may now be written as 

(d/dt)Ur-l(t) 
= [A +exp(At) .  exp(Clt) • C2" exp( -Cl t ) -  exp(-At) ,  Ur-l(t)], 

where 

S--1 
C2 = E ( / ~ r - I - , ~ i ) / l ~ r - i U j ( O ) - A r l l ( U r ( O )  -b U s ( O ) )  • 

i=r+l 

It is easy to see that 

U,-l(t) = exp(A/) ,  exp(Clt) • exp(Cz-  C1)t" U,-I(O) 
• e x p ( C 1 - C : ) t ,  exp( -C , t )  • exp(-At) .  

For i =0 ,  1 . . . . .  r - 2 ,  the differential equations for U~(t) do not admit 
solutions of this simple form. We collect these results in the following 
theorem. 

Theorem 4.1. Suppose that h0 and h~ have the above orthogonal 
direct sum decompositions, and let 

r = l  

in (17). Suppose, moreover, that 

0 :ho-~ho 
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has the form assumed above. Then, the solution to (15) may be written as 

s - - 1  

u°(t)Bi = Uo(t)+ E Uj(t) 
i = l  1=2 

i ~ r n + l  

= exp(At)  • C1 " e x p ( - A t )  

+exp(At) .exp(Clt ) .  e x p ( C 2 - C D t .  U o ( O ) e x p ( - C l t ) ' e x p ( - A t ) ,  

vi(t)Bi = Ur(t)+ U~(t) 

= exp(At)  • exp(Clt )  • (Ur(0)+ Us(0)" exp(-Clt ) ,  e x p ( - A t ) ,  

w h e r e  C 1 and C2 are given above. 

Corollary 4.1. Suppose that the assumptions of the 
theorem are operative,  and suppose also that 

k i ~ {0}.  

Then, the solution to (15) may be written as 

S--I 

~°(t)Bi= 2 ~:~(t) 
i = l  j=O 

S--1 

= exp(At ) ,  exp(C2t) .  Y Uj(0).  e x p ( - C 2 t ) ,  e x p ( - A t ) ,  
i = 0  

vi(t)B, = U~(t)=exp(At). U~(O). e x p ( - A t ) .  
i = m + l  

while 

The trajectory Xo(t) corresponding to this via (1) is given by 

Xo(t) = exp(At)  • exp(C2t) • e x p ( U ( 0 ) -  C2)t, 

s -1  

u(o)= Y ~(0). 
i = 0  

where 

preceding 

(18) 

Proof. If 

we have 

k1 = {0}, 

UI(0 )  = 0, 
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and hence 

s - - 1  

c~= E (Ao-Ai)/~oUj(O)-AolUs(O). 
i=2 

From this, we see that 

[c~, c21 = 0, 

m v 
and we compute ~i=1 u°(t)Bi and ~i=m+l vi(t)Bi from Theorem 4.1. The 
expression for Xo(t) is easily seen to be correct by differentiating. 

Example 4.1. Consider the following evolution equation and per- 
formance measure for a system evolving on SU(3): 

0 al+ia2 --u2(t)+iu4(t)q 

(d/dt)X(t) = - a t  +ia2 0 Ul(t);iu3(t) iX( t ) ,  
Uz(t)+ iu4(t) -ul( t)+ iu3(t) 

T 

'r/~---fo i=x~Ui(t)2dt" 

The Lie algebra su(3) may be embedded in the Lie algebra so(6) via the 
realification homomorphisrn 

~+i~[_~ ~] 
Hence, we may consider the corresponding equation 

(d /d t ) r ( t )=(p(A)+ ~ u,(t)p(B3)Y(t) 
i = 1  

evolving on the image group 

{exp{p (A), p (B1), p (Bz), p (B3), p (Bg)}La }0. 

Here, 

al+ia2il Iio A = al+ia2 0 , B1 = 0 
0 0 -1  

Ii° il i!° il E! B 2  = 0 , B 3  = 0 , B e  = 

0 i 

Z 
0 
0 
0 il 
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The  mapping  

0 : h o ~ h o ,  

where  ho = linear span of p(B1), p(B2), p(B3), p(B4), is ¼I, where  I is the 
identi ty mapp ing  on the vector  space ho. The  images under  p of 

0 , 0 , 

0 0 

i o oj [io -½i 0 , i 0 , ,  

0 0 - i j  

form a basis in p(su(3)) for h~. It is easy to verify that h~ is a subalgebra 
and 

h~ C[ho, ho], 

so that, in terms of the decompos i t ion  (17), we have 

r = 1, s = 2, ko = ho, kl = {0}, k2 = hi~. 

F rom T h e o r e m  4.1, we find that  there  exist funct ions 
Ol(t), v2(t), o3(t), •4(t) which, toge ther  with the opt imal  controls,  satisfy the 
equat ion  

iv3(t) vl(t)+iv2(t) -Uz(t)+iu4(t) 
(d/dt) l-Vl(t)+iv2(t) iv4(t)-½iv3(t) ul(t)+iu3(t) 

h u2(t)+iu4(t) -ul(t)+iu3(t) -iv4(t)-½iv3(t)~ 

I I  0 a l Jr" ia2 --~2(/')-{'- iu4(t)~ 
= --al+ia2 0 ul(t) iu3(t) i 

LLu~(t)+iu,(t) -u,(t)+iu~(t) ; ' 

iv3(t) Vl(I) + i/22(g) -/t2(/') + [//4(t)qq 
--vl(t)+ivz(t) iv4(t)-~iv3(t) ul(t)+iu3(t) l~ 
u2(t )+iu4( t )  -ul(t)+iu3(t) -iv4(t)½iv3(t) J3 
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This equation is obtained by pulling (15) back from p (su (3)) to su (3). From 
Corollary 4.1, we find that the solution to this equation is of the form 

( 0 0 -u°(t)oU°(t)] 
0 0 u°(t) u°(t) 

u° (t)+ u°(t) -u° (t) + u° (t) 

= exp(At) • exp(Ct) • 0 

u ° (o)+ u ° (o) - u  ° (o)+ u ° (o) 

-~°(o)+ u°(o)] 
u°(O);u°(O) l 

• exp( -Ct )"  e x p ( -  At), 

where 

C= 
iv3(O) vffO)+ iv2(O) 0 -] 

-Vl(O)+iv2(O) iv4(O)-liv3(O) 0 ~. 
0 0 --iv4(O)--½iv3(O) 

Example 4.2. Consider the system on S1(2, R) 

(d/d,)rx,(t) x 2 ( t ) ] : r  o ~1(,)] rx~(t) x~(O 1 
Lx3(t) x4(t)J Lu2(t) 0 J Lx3(t) x4(t)J' 

for which we have defined the performance measure 
T P 

= Jo [ul(t)2+u2(t)2] dt. ~7 

By Theorem 3.4, there exists a function v(t) which, together with the 
optimal controls u o (t) and u o (t), satisfies the Euler-Lagrange equation 

(d/dt)[v(il) u°( t ) ]  t r y ( t ) u O ( / ) ]  0 

Writing this out componentwise, we obtain 

dv/dt = U°l(t) 2 -  u0(t) 2, 
duJdt = 2v(t)u° (t), 
du2/ dt = -2v (t)u° (t). 

Making the change of variables 

yl(t) = -2v(t), y2(t) = 2(u°(t) + u°(t)), y3(t) = 2(u x°(t) - u2°(t)), 
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we obtain the equivalent system of equations 

dy l /  dt = -½Y2(t )y3( t ), 

dy2/dt  = yl(t)y3(t), 

dy3/dt  = -yl( t )y2(t) ,  

and these are easily solved in terms of the elliptic functions of Jacobi (Ref. 
14, Chapter  22). 

5. Conclusions 

In this paper, we have begun an investigation into methods of finding 
explicit solutions to nonlinear optimal control problems. Our central result 
is that, for quadratic performance measures and systems (1) evolving on 
certain matrix Lie groups, optimal controls are given as solutions to a 
certain quadratic matrix differential equation; in a number of cases, the 
form of the optimal controls may be determined explicitly in closed form 
from this differential equation. In a future paper, we shall show how the 
boundary conditions of the optimization problem may be incorporated to 
specify completely the optimal controls, 
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