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Abstract

We develop a method for the stabilization of mechanical systems with symmetry
based on the technique of controlled Lagrangians. The procedure involves making
structured modifications to the Lagrangian for the uncontrolled system, thereby con-
structing the controlled Lagrangian. The Euler-Lagrange equations derived from the
controlled Lagrangian describe the closed-loop system, where new terms in these equa-
tions are identified with control forces. Since the controlled system is Lagrangian by
construction, energy methods can be used to find control gains that yield closed-loop
stability.

In this paper we use kinetic shaping to preserve symmetry and only stabilize
systems modulo the symmetry group. In the sequel to this paper (Part II), we extend
the technique to include potential shaping and we achieve stabilization in the full
phase space.

The procedure is demonstrated for several underactuated balance problems, in-

cluding the stabilization of an inverted planar pendulum on a cart moving on a line

and an inverted spherical pendulum on a cart moving in the plane.
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1 Introduction

In this paper we develop a constructive approach to the derivation of stabilizing
control laws for Lagrangian mechanical systems where the Lagrangian has the form
of kinetic minus potential energy. The method is Liapunov-based and thus yields
large and computable basins of stability, which become asymptotically stable when
dissipative controls are added. The methods are designed to be effective for the
stabilization of balance systems, such as inverted pendula, as well as for systems
with gyroscopic forces such as satellites and underwater vehicles with internal rotors.
These examples are worked out in this and companion papers.

The guiding principle behind our methodology is to consider a class of control
laws that yield closed-loop dynamics which remain in Lagrangian form. This has
the advantage that stabilization can be understood in terms of energy. In particular,
we can make use of energy methods which provide a Liapunov function which gives
information on how to choose the control gains to achieve closed-loop stability.
Further, even though work is done by the control forces, there is a modification of
the mechanical energy of the system that is exactly conserved by the closed-loop
dynamics; one can think of it as a combined energy available to the mechanism and
the control forces. This can be used to show that, for fixed gains, the control inputs
will never need to become large (in time) to achieve stabilization.

Closed-loop dynamics are guaranteed to be Lagrangian by first choosing the
closed-loop Lagrangian from a class of controlled Lagrangians that we will explicitly
describe. The controlled Lagrangian then provides the control law: the closed-loop
dynamics are the Euler-Lagrange equations derived from the controlled Lagrangian

2



and the new terms that appear in the dynamic equations are identified with the
control forces. The method ensures that the new terms in the equations of motion
only appear in the desired control directions. The associated theory provides suffi-
cient (matching) conditions under which this approach will provide such a control
law that yields a closed-loop system in Lagrangian form.

The approach is motivated by a result in Bloch, Krishnaprasad, Marsden and
Sánchez de Alvarez [1992] for stabilization of unstable middle axis rotation of a rigid
spacecraft using a single internal rotor. There, the framework was Hamiltonian and
it was shown that the chosen rotor control law was such that the closed-loop system
was still Hamiltonian. The new Hamiltonian was a modification of the kinetic energy
(Hamiltonian) of the uncontrolled spacecraft. The energy-Casimir method was used
to choose the control gain and thereby guarantee closed-loop stability.

The objective of this paper is to demonstrate how the approach of Bloch, Kr-
ishnaprasad, Marsden and Sánchez de Alvarez [1992] can be generalized and made
algorithmic. We switch to a Lagrangian framework from a Hamiltonian framework
which helps us to systematize the modification of the uncontrolled Lagrangian to
get our controlled Lagrangian. The basic idea behind our approach was introduced
in Bloch, Marsden and Sánchez de Alvarez [1997] and in Bloch, Leonard and Mars-
den [1997], [1998]. We remark, however, that there is no reason that our procedure
cannot be carried out on the Hamiltonian side. This leads to interesting questions
regarding the modified symplectic structures involved and we shall look at this in a
future publication. The matching conditions derived in this paper are explicit; for
more general, but less explicit conditions, see Hamberg [1999] and Auckly, Kapitan-
ski and White [2000].

In this paper, we confine ourselves to controlled Lagrangians that only involve
modifications to the kinetic energy of the system. Thus, our approach is comple-
mentary to that of, for example, van der Schaft [1986] and Ortega, Loria, Kelly, and
Praly [1995]. We can, however, also consider modifications to the potential energy
for stabilization and tracking purposes and this is done in the sequel to this paper,
Part II (Bloch, Chang, Leonard and Marsden [2000]).

The results of the present paper create an energy extremum in the reduced phase
space and, accordingly, allow one to deal with stability modulo the symmetries,
that is, stability on a reduced phase space. This is clearly a limitation, but this
problem is addressed by the introduction of potential shaping, which allows one to
achieve stabilization in the full phase space rather than simply modulo the symmetry
directions. (For early results in this direction, see Bloch, Leonard and Marsden
[1999b].) In addition, Part II extends the study of dissipative controllers to the case
of potential shaping and, correspondingly, achieves asymptotic stability in the whole
phase space, not just the reduced space.

In a forthcoming related paper, Bloch, Leonard and Marsden [2000], we consider
the application of our methods to Euler-Poincaré systems which we illustrate with
the problems of stabilization of rotation of a rigid spacecraft about its unstable
intermediate axis using a single internal rotor and stabilization of the dynamics of
an underwater vehicle.

In this paper we restrict ourselves to a class of systems satisfying special match-
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ing conditions. This class includes balance systems, such as the inverted planar
pendulum on a cart and the inverted spherical pendulum on a cart in the plane,
which are mechanically flat, i.e., they lack gyroscopic forces. In a future paper we
analyze a more general class of systems which includes examples with gyroscopic
forces such as the inverted pendulum on a rotating arm also known as the whirling
pendulum (see Bloch, Leonard and Marsden [1999a]).

Other relevant work involving energy methods in control and stabilization in-
cludes Krishnaprasad [1985], Wang and Krishnaprasad [1992], Koditschek [1989],
Koditschek and Rimon [1990], Baillieul [1993] and Leonard [1997]. Related ideas
on mechanical control systems may also be found in Brockett [1976], van der Schaft
[1982], [1986], Crouch and van der Schaft [1987], Lewis and Murray [1997], and
Jalnakurpar and Marsden [1999], [2000].

Organization of the Paper. In §1.1, we describe the controlled Lagrangian ap-
proach to stabilization. In §1.2, we apply the approach to stabilization of an in-
verted pendulum on a cart. In §2.1 we describe the structure of the general class
of controlled Lagrangians we consider. In §2.2 we prove the first matching theo-
rem showing that for certain kinds of systems with Abelian symmetry groups and
with controls applied to these symmetry directions, one can always find a suitable
controlled Lagrangian whose Euler-Lagrange equations give the desired controlled
equations. The proof is constructive and shows explicitly how to choose the con-
trolled Lagrangian and identifies the free gain parameters that are needed to achieve
stabilization. The control law itself is derived in §3.1 and in §3.2 we give a suffi-
cient condition for closed-loop stability. This is a stabilizability result in the context
of the controlled Lagrangian approach and it provides a construction for choosing
control gains for stability. In §4, we apply the approach to stabilization of inverted
pendula, including the case of an inverted spherical pendulum on a cart. In §5 we
show how to modify the control laws to simulate dissipative effects of the right sort
to achieve asymptotic stability.

Part II (Bloch, Chang, Leonard and Marsden [2000]), extends the results herein
to include potential shaping and tracking. It is shown that one gets asymptotic
stability in the full phase space and it deals with such examples as the inverted
planar pendulum (and spherical pendulum) on a cart that moves on an incline.
Bloch, Marsden and Leonard [2000], proves a matching theorem designed specifically
for the case of the Euler–Poincaré equations. This case, not covered by the first
matching theorem, is applied to a spacecraft with an internal rotor and to the
problem of stabilizing an underwater vehicle using internal rotors. In a further
paper we prove a third matching theorem that includes the preceding as two special
cases and apply it to a whirling pendulum (motivated by Åström and Furuta [1996]).
This is discussed in Bloch, Leonard and Marsden [1999a].

1.1 The Controlled Lagrangian Approach

In this section we describe in broad terms the mathematics, intuition, and calcula-
tional procedure for the method of controlled Lagrangian. This provides a general

4



setting both for the current paper and related papers as described above.
The controlled Lagrangian approach begins with a mechanical system with an

uncontrolled (free) Lagrangian equal to kinetic energy minus potential energy. We
then modify the kinetic energy (given by a metric tensor) to produce a new controlled
Lagrangian which describes the dynamics of the controlled closed-loop system. (As
mentioned above the method can be extended to the case of modified potentials and
this is described in the forthcoming Part II of this paper.)

The Setting. Suppose our system has configuration space Q and that a Lie group
G acts freely and properly on Q. It is useful to keep in mind the case in which
Q = S ×G with G acting only on the second factor by acting on the left by group
multiplication.

For example, for the inverted planar pendulum on a cart (which we consider
in detail in §1.2), Q = S1 × R with G = R, the group of reals under addition
(corresponding to translations of the cart), while for a rigid spacecraft with a rotor
(which we treat in a companion paper), Q = SO(3) × S1, where now the group is
G = S1, corresponding to rotations of the rotor.

Our goal will be to control the variables lying in the shape space Q/G (in the
case in which Q = S ×G, then Q/G = S) using controls which act directly on the
variables lying in G. We assume that the Lagrangian is invariant under the action of
G on Q, where the action is on the factor G alone. In many specific examples, such
as those given below, the invariance is equivalent to the Lagrangian being cyclic in
the G-variables. Accordingly, this produces a conservation law for the free system.
Our construction will preserve the invariance of the Lagrangian, thus providing us
with a controlled conservation law.

The essence of the modification of the Lagrangian involves changing the metric
tensor g(·, ·) that defines the kinetic energy of the system 1

2g(q̇, q̇).
Our method relies on a special decomposition of the tangent spaces to the con-

figuration manifold and a subsequent “controlled” modification of this split. We can
describe this as follows:

Horizontal and Vertical Spaces. The tangent space to Q can be split into a
sum of horizontal and vertical parts defined as follows: for each tangent vector vq

to Q at a point q ∈ Q, we can write a unique decomposition

vq = Hor vq + Ver vq, (1.1)

such that the vertical part is tangent to the orbits of the G-action and where the
horizontal part is the metric orthogonal to the vertical space; that is, it is uniquely
defined by requiring the identity

g(vq, wq) = g(Hor vq,Horwq) + g(Ver vq,Verwq) (1.2)

where vq and wq are arbitrary tangent vectors to Q at the point q ∈ Q. This choice
of horizontal space coincides with that given by the mechanical connection - see,
for example, Marsden [1992]. One can think intuitively of this decomposition of
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vectors as a decomposition into a piece in the symmetry, or group direction (the
vertical piece) and one in the shape, or internal direction (the horizontal piece). For
example, in a vibrating molecule, this would correspond to a decomposition into
rotational and vibrational modes. However, it is important to realize that even when
Q = S ×G, while the vertical space consists of vectors with a zero first component,
the horizontal space need not consist of vectors with a zero second component. In
examples, deviations from this are important and correspond to the interaction of
the dynamics of the shape and group variables.

The Controlled Lagrangian. For the kinetic energy of our controlled Lagrangian,
we use a modified version of the right hand side of equation (1.2). The potential
energy remains unchanged. The modification consists of three ingredients:

1. a different choice of horizontal space denoted Horτ ,

2. a change g → gσ of the metric acting on horizontal vectors and

3. a change g → gρ of the metric acting on vertical vectors.

To explain these changes in detail, we will need a little more notation. First
of all, we let ξQ denote the infinitesimal generator corresponding to a Lie algebra
element ξ ∈ g, where g is the Lie algebra of G (see Marsden [1992] or Marsden and
Ratiu [1994], Chapter 9 for the relevant elementary definitions and properties of Lie
groups and group actions). This may be thought of intuitively as infinitesimal group
motions of the system. Thus, for each ξ ∈ g, ξQ is a vector field on the configuration
manifold Q and its value at a point q ∈ Q is denoted ξQ(q).

Definition 1.1 Let τ be a Lie-algebra-valued horizontal one form on Q; that is,
a one form with values in the Lie algebra g of G that annihilates vertical vectors.
This means that for all vertical vectors v, the infinitesimal generator [τ(v)]Q cor-
responding to τ(v) ∈ g is the zero vector field on Q. The τ-horizontal space at
q ∈ Q consists of tangent vectors to Q at q of the form Horτvq = Hor vq− [τ(v)]Q(q),
which also defines vq �→ Horτ (vq), the τ-horizontal projection. The τ-vertical
projection operator is defined by Verτ (vq) := Ver(vq) + [τ(v)]Q(q).

Notice that from these definitions and (1.1), we have

vq = Horτ (vq) + Verτ (vq) (1.3)

just as we did with τ absent. In fact, this new horizontal subspace can be regarded
as defining a new connection, the τ -connection. The horizontal space itself, which
by abuse of notation, we also write as just Hor or Horτ of course depends on τ also,
but the vertical space does not—it is the tangent to the group orbit. On the other
hand, the projection map vq �→ Verτ (vq) does depend on τ .

Definition 1.2 Given gσ, gρ and τ , we define the controlled Lagrangian to be
the following Lagrangian which has the form of a modified kinetic energy minus the
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potential energy:

Lτ,σ,ρ(v) =
1
2

[gσ(Horτvq,Horτvq) + gρ(Verτvq,Verτvq)] − V (q), (1.4)

where V is the potential energy.

The equations corresponding to this Lagrangian will be our closed-loop equa-
tions. The new terms appearing in those equations corresponding to the directly
controlled variables are interpreted as control inputs. The modifications to the La-
grangian are chosen so that no new terms appear in the equations corresponding to
the variables that are not directly controlled. We refer to this process as “matching”.
This matching problem will be studied in detail in subsequent sections.

Another way of expressing what we are doing here is the following. A principal
connection on a bundle Q → Q/G, may be thought of as a Lie-algebra-valued one
form and one can obtain a new connection by adding to it a horizontal one form
τ . The new horizontal space described in the preceding definition is exactly of this
sort.

Special Controlled Lagrangians. In this paper we consider controlled Lagrangians
in which we take gρ = g so that the formula (1.4) describes a controlled Lagrangian
of the form Lτ,σ. In certain examples of interest, including the inverted planar or
spherical pendulum on a cart, we not only can choose gρ = g (i.e., there is no gρ

modification needed), but we can also choose the metric gσ to modify the original
metric g only in the group directions by a scalar factor σ. As we shall see in section
2 the general formula for the controlled Lagrangian then takes the simplified form

Lτ,σ(v) = L(v + [τ(v)]Q(q)) +
σ

2
g([τ(v)]Q, [τ(v)]Q). (1.5)

We will develop a formula like this for the more general case of Lτ,σ,ρ (1.4) in
§2.1. For the satellite with rotors, for example, and for stabilization in the full phase
space one must include the effects of gρ as well; this modification, consistent with
(1.4), is given by formula (2.2). Applications of the general case are discussed in
the companion papers mentioned above. We remark in passing that the controlled
Lagrangian is a modification of the Kaluza-Klein Lagrangian for a particle in a
magnetic field, (see, for example, Marsden and Ratiu [1994]).

The General Strategy. In outline, the general procedure that one goes through
to achieve stabilization is given in the following steps.

1. Start with a mechanical system with a Lagrangian L of the form kinetic minus
potential energy and a symmetry group G. (In the pendulum-cart example
below the symmetry group is translation in the horizontal direction).

2. Write down the equations of motion for the uncontrolled system.

3. Introduce τ, gσ and gρ to get the controlled Lagrangian (1.4).
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4. Write down the equations of motion corresponding to the controlled Lagrangian
and read off the control law u from the equations in the symmetry variables
(this will be a conservation law).

5. Choose τ , gσ and gρ so that the controlled Euler-Lagrange equations for the
original system (i.e., the Euler-Lagrange equations for the Lagrangian L with
the control) agree with (that is, match) the Euler-Lagrange equations for the
controlled Lagrangian Lτ,σ,ρ. Determine a feedback law for u by using the
Euler-Lagrange equations to eliminate accelerations; then the control law be-
comes a feedback that is configuration and, possibly, velocity dependent. The
general matching theorem can be used to guide these calculations.

6. The stability of an equilibrium is determined by linearization or by the energy-
momentum (or, when appropriate, the energy-Casimir-Arnold) method, using
any available freedom in the choice of τ , gσ and gρ.

We use this strategy to prove general matching and stabilizability theorems. The
matching theorems provide sufficient conditions for successful completion of Steps 1
through 5 and an explicit construction of the controlled Lagrangian and the control
law. In the case that matching is achieved, the stabilizability theorems provide
sufficient conditions for closed-loop stability according to Step 6. Again the theory
is constructive, providing an explicit choice of control gains for closed-loop stability.

We must emphasize that in doing concrete examples, it can be quite complicated
to go through the preceding procedures directly, although we shall do so in the next
section for the relatively simple case of the inverted pendulum on a cart. Using the
general matching theorems in examples, however, is relatively straightforward.

1.2 The Inverted Pendulum on a Cart

Before developing the theory further, we will give an example to show how the ideas
work in a concrete setting and to show that the ideas lead to interesting results.

The system we consider is the inverted pendulum on a cart. (The linearized case
of this problem was considered in Bloch, Marsden and Sánchez de Alvarez [1997].)
This example shows the effectiveness of the method for the stabilization of balance
systems. Related examples we will treat later are the inverted spherical pendulum
on a hockey puck, the satellite with rotors, the underwater vehicle with internal
rotors and an inverted pendulum on a rotating arm.

Other examples that we hope will eventually be amenable to these methods
include the bicycle (see, for example, Getz and Marsden [1994] and Koon and Mars-
den [1997]). For these nonholonomic systems, it is hoped that one can use the
nonholonomic energy-momentum techniques of Zenkov, Bloch and Marsden [1998]
to achieve stabilization.

The Lagrangian. First, we set up the Lagrangian for the pendulum-cart system.
Let s denote the position of the cart on the s-axis and let φ denote the angle of the
pendulum with the upright vertical, as in Figure 1.1.
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s

φ

m

l

g

M

l = pendulum length

m = pendulum bob mass

M = cart mass

g = acceleration due to gravity

s

Figure 1.1: The pendulum on a cart.

The configuration space for this system is Q = S × G = S1 × R, with the first
factor being the pendulum angle φ and the second factor being the cart position s.
The velocity phase space, TQ has coordinates (φ, s, φ̇, ṡ).

The velocity of the cart relative to the lab frame is ṡ, while the velocity of the
pendulum relative to the lab frame is the vector

vpend = (ṡ + l cosφ φ̇,−l sinφ φ̇). (1.6)

The system kinetic energy is the sum of the kinetic energies of the cart and the
pendulum:

K(φ, s, φ̇, ṡ) =
1
2

[φ̇, ṡ]
[

ml2 ml cosφ
ml cosφ M + m

] [
φ̇
ṡ

]
. (1.7)

The Lagrangian is the kinetic minus potential energy, so we get

L(φ, s, φ̇, ṡ) = K(φ, s, φ̇, ṡ) − V (φ), (1.8)

where the potential energy is V = mgl cosφ.
The symmetry group G of the pendulum-cart system is that of translation in the

s variable, so G = R. We do not destroy this symmetry when doing stabilization in
φ; we would, however, use symmetry-breaking potentials to track in the variable s if
tracking were our goal. In this paper we are focusing on stabilizing this and similar
balance systems.

For notational convenience we rewrite the Lagrangian as

L(φ, s, φ̇, ṡ) =
1
2
(αφ̇2 + 2β cosφṡφ̇ + γṡ2) + D cosφ , (1.9)

where α = ml2, β = ml, γ = M + m and D = −mgl are constants. Note that
αγ−β2 > 0, reflecting the positive definiteness of the mass matrix (i.e., the metric).
The momentum conjugate to φ is

pφ =
∂L

∂φ̇
= αφ̇ + β cosφṡ
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and the momentum conjugate to s is

ps =
∂L

∂ṡ
= γṡ + β cosφφ̇.

The relative equilibrium defined by φ = 0, φ̇ = 0 and ṡ = 0 is unstable since D < 0.

Equations of Motion. The equations of motion for the pendulum-cart system
with a control force u acting on the cart (and no direct forces acting on the pendu-
lum) are, since s is a cyclic variable,

d

dt

∂L

∂φ̇
− ∂L

∂φ
= 0

d

dt

∂L

∂ṡ
= u ,

i.e.,

d

dt
pφ + β sinφṡφ̇ + D sinφ = 0,

that is,

d

dt
(αφ̇ + β cosφṡ) + β sinφṡφ̇ + D sinφ = 0 (1.10)

and

d

dt
ps =

d

dt
(γṡ + β cosφφ̇) = u .

The Controlled Lagrangian. Next, we form the controlled Lagrangian by mod-
ifying only the kinetic energy of the free pendulum-cart system according to the
procedure given in the preceding section. This involves a nontrivial choice of τ and
gσ, but in this case, as we have remarked, it is sufficient to let gρ = g.

The most general s-invariant horizontal one form τ is given by τ = k(φ)dφ and
we choose gσ to modify g in the group direction by a constant scalar factor σ (in
general, σ need not be a constant, but it is for the present class of examples). Using
(1.5), we let

Lτ,σ :=
1
2
(αφ̇2 + 2β cosφ(ṡ + kφ̇)φ̇ + γ(ṡ + kφ̇)2) +

σ

2
γk2φ̇2 + D cosφ. (1.11)

Notice that the variable s is still cyclic. Following the guidelines of the theory,
we look for the feedback control by looking at the change in the conservation law.
Associated to the new Lagrangian Lτ,σ, we have the conservation law

d

dt

(
∂Lτ,σ

∂ṡ

)
=

d

dt
(β cosφφ̇ + γ(ṡ + kφ̇)) = 0, (1.12)
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which we can rewrite in terms of the conjugate momentum ps for the uncontrolled
Lagrangian as

d

dt
ps = u := − d

dt
(γk(φ)φ̇). (1.13)

Thus, we identify the term on the right hand side with the control force exerted on
the cart.

Using the controlled Lagrangian and equation (1.12), the φ equation is computed
to be (

α− β2

γ
cos2 φ + σγk2(φ)

)
φ̈ +

(
β2

γ
cosφ sinφ + σγk(φ)k′(φ)

)
φ̇2

+ D sinφ = 0 . (1.14)

Matching. The next step is to make choices of k and σ so that the equation
(1.14) using the controlled Lagrangian agrees with the φ equation for the controlled
cart (1.10) with the control law given by equation (1.13). The φ equation for the
controlled cart is(

α− β2

γ
cos2 φ− βk(φ) cosφ

)
φ̈ +

(
β2

γ
cosφ sinφ− β cosφk′(φ)

)
φ̇2

+ D sinφ = 0 . (1.15)

Comparing equations (1.14) and (1.15) we see that we require (twice)

σγ[k(φ)]2 = −βk(φ) cosφ . (1.16)

Since σ was assumed to be a constant we set

k(φ) = κ
β

γ
cosφ (1.17)

where κ is a dimensionless constant (so σ = −1/κ).

The Control Law. Substituting for φ̈ and k in (1.13) we obtain the desired
nonlinear control law:

u =
κβ sinφ

(
αφ̇2 + cosφD

)
α− β2

γ (1 + κ) cos2 φ
(1.18)

Stabilization. By examining either the energy or the linearization of the closed-
loop system, one can see that the equilibrium φ = φ̇ = ṡ = 0 is stable if

κ >
αγ − β2

β2
=

M

m
> 0 . (1.19)
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In summary, we get a stabilizing feedback control law for the inverted pendulum
provided κ satisfies the inequality (1.19). As mentioned in the introduction, this
means stability in the reduced space, that is, modulo translations. Concretely, this
means that one has stability in the pendulum position, but not in the cart position,
even though, as we shall see, with dissipation, one can bring the cart velocity to
zero. Our work on potential shaping (Part II; see also Bloch, Leonard and Marsden
[1999b]) demonstrates how to obtain stability in the cart position also.

A calculation shows that the denominator of u is nonzero for φ satisfying sin2 φ <
E/F where E = κ− (αγ−β2)/β2 (E is positive if the stability condition holds) and
F = κ + 1. The range of φ tends to the range −π/2 < φ < π/2 for large κ.

The above remark suggests that the region of stability (or attraction when damp-
ing control is added) is the whole range of non-downward pointing states. In fact,
we assert that this method produces large computable domains of attraction for
stabilization.

This approach has advantages because it is done within the context of mechanics;
one can understand the stabilization in terms of the effective creation of an inverted
energy well by the feedback control. (Our feedback in general creates a maximum
for balance systems, since for these systems the equilibrium is a maximum of the
potential energy which we do not modify). As discussed in §5, the system is then
robustly stabilized by the addition of appropriate dissipation. Note also that the
linearized feedback is just proportional feedback.

Remark. The matching procedure does not involve the actual value of the new
conserved quantity for the controlled system—this is also true for all three of the
matching theorems in this paper. The value of the conserved quantity was used in
Bloch, Krishnaprasad, Marsden and Sanchez [1992] because a symmetry reduction
was performed.

2 The First Matching Theorem.

In this section, we prove the first of three major matching theorems: the case of
gρ = g.

The main goal is to abstract what was happening for the case of the inverted
planar pendulum and prove a general matching theorem that applies to such exam-
ples. We apply the matching result to the more sophisticated case of the inverted
spherical pendulum in

§4.2. As shown in companion papers, more general results (e.g., where gρ �= g)
are needed for the case of the satellite and the underwater vehicle as well as the
whirling pendulum.

2.1 The Structure of Lτ,σ,ρ

As we have mentioned, while we needed only Lτ,σ for the inverted pendulum, we
will eventually need Lτ,σ,ρ for the satellite with a rotor, the underwater vehicle and
the inverted pendulum on a rotor arm.
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In this section we prove a structure theorem for Lτ,σ,ρ that proves and generalizes
formula (1.5). Recall that this formula was already helpful in the case of the inverted
pendulum; likewise, the formula below will be useful in our first matching theorem
and in the case of the satellite and the underwater vehicle, etc.

We begin by recalling the definition of the controlled Lagrangian:

Lτ,σ,ρ(v) =
1
2

[gσ(Horτvq,Horτvq) + gρ(Verτvq,Verτvq)] − V (q), (2.1)

and we make the following assumptions on the metric gσ (these assumptions are
also appropriate for the case of Lτ,σ that we considered earlier):

1. g = gσ on Hor,

2. Hor and Ver are orthogonal for gσ.

Keep in mind that Hor denotes the horizontal space for the given uncontrolled
system and that Horτ denotes the horizontal space as modified by the one form τ .
Note also that the new metrics gσ and gρ will modify g on Ver, the vertical space
(or group directions), which is independent of any modification due to τ . On the
other hand, also recall that the vertical projection operator

Verτ (vq) := Ver(vq) + [τ(v)]Q(q)

does depend on τ .

Theorem 2.1 We have the following formula:

Lτ,σ,ρ(v) = L(v + τ(v)Q) +
1
2
gσ(τ(v)Q, τ(v)Q) +

1
2
'(v) (2.2)

where v ∈ TqQ and where '(v) = (gρ − g)(Verτ (v),Verτ (v)).

Note that if gρ = g (so that ' = 0) and if gσ is a scalar times g in the group
directions, then this formula reduces to (1.5).

Proof. We begin by manipulating the first (“kinetic energy”) term of Lτ,σ,ρ, (2.1),
using the given properties of gσ and the definition of the τ -horizontal operator
Horτ (vq) = Hor(vq) − τ(vq)Q :

1
2

[gσ(Horτvq,Horτvq)] =
1
2

[gσ(Hor(v) − τ(v)Q,Hor(v) − τ(v)Q)]

=
1
2

[g(Hor(v),Hor(v)) + gσ(τ(v)Q, τ(v)Q)] .

Write the second term of (2.1) as

1
2

[gρ(Verτvq,Verτvq)] =
1
2

[g(Verτvq,Verτvq) + '(v)]

13



Now write

1
2

[g(Verτvq,Verτvq)] =
1
2

[g(Ver(v) + τ(v)Q,Ver(v) + τ(v)Q)]

=
1
2
g(Ver(v),Ver(v)) + g(Ver(v), τ(v)Q) +

1
2
g(τ(v)Q, τ(v)Q)

=
1
2
g(Ver(v),Ver(v)) + g(v, τ(v)Q) +

1
2
g(τ(v)Q, τ(v)Q),

since v = Hor(v) + Ver(v) and the horizontal space is g-orthogonal to the vertical
space. Substituting this last expression into the second term of (2.1) and adding it
to the first term gives

1
2
g(v, v) + g(v, τ(v)Q) +

1
2
g(τ(v)Q, τ(v)Q) +

1
2
gσ(τ(v)Q, τ(v)Q) +

1
2
'(v)

which equals

1
2
g(v + τ(v)Q, v + τ(v)Q) +

1
2
gσ(τ(v)Q, τ(v)Q) +

1
2
'(v).

Subtracting the potential gives the desired expression. �

2.2 The First Matching Theorem.

Introduction. Motivated by the inverted planar pendulum on a cart, in this
section we prove the first matching theorem for mechanical systems such as the
inverted pendulum for which we can take gρ = g. The group G associated with the
control directions will be assumed to be Abelian. We illustrate this case in §4 with
inverted pendula, including the inverted spherical pendulum on a two-dimensional
“cart”.

Roughly speaking, the class of systems covered by the first matching theorem
are those whose control forces are in the direction of an Abelian symmetry group,
(such as the translation direction for the pendulum on a cart), whose inertial prop-
erties are independent of the internal configuration of the system (such as the total
translational inertia of the cart pendulum system is independent of the angle of the
pendulum) and whose gyroscopic structure satisfies a certain symmetry condition.
The exact hypotheses are spelled out in assumptions M-1, M-2 and M-3 discussed
hereunder.

All of the matching theorems are constructive; they show explicitly how to pick
the controlled Lagrangian to achieve the desired matching in a way that generalizes
the example of the inverted planar pendulum on a cart.

The Controlled Lagrangian Identity. Let Hor be the horizontal space for the
given kinetic energy metric as explained earlier, let τ be a horizontal one form and
let Horτ be the new horizontal space as explained earlier. Define Lτ,σ,ρ according to
Definition 1.2. Theorem 2.1 for our controlled Lagrangian says that

Lτ,σ,ρ(v) = L(v + τ(v)Q) +
1
2
gσ(τ(v)Q, τ(v)Q) +

1
2
'(v)
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where ' = gρ−g on the vertical space. For this section, we choose gρ = g, so ' = 0
and we get

Lτ,σ(v) = L(v + τ(v)Q) +
1
2
gσ(τ(v)Q, τ(v)Q). (2.3)

This formula will be extremely useful for the first matching theorem, which we
shall perform using a coordinate calculation.

Notation. Locally, we write coordinates for Q as xα, θa where xα, α = 1, . . . n
are coordinates on the shape space Q/G and where θa, a = 1, . . . , r are coordinates
for the Abelian group G. For the uncontrolled system, the variables θa will be
cyclic coordinates in the classical sense. We write the given Lagrangian in these
coordinates (with the summation convention in force) as

L(xα, ẋβ, θ̇a) =
1
2
gαβẋ

αẋβ + gαaẋ
αθ̇a +

1
2
gabθ̇

aθ̇b − V (xα). (2.4)

The Conserved Quantity. The conserved quantity, that is, the momentum con-
jugate to the cyclic variable θa for the preceding Lagrangian, is given by

Ja =
∂L

∂θ̇a
= gαaẋ

α + gabθ̇
b. (2.5)

The Controlled Euler-Lagrange Equations. The equations of motion for the
control system where the controls ua act in the θa directions are the controlled
Euler-Lagrange equations:

d

dt

∂L

∂ẋα
− ∂L

∂xα
= 0

d

dt

∂L

∂θ̇a
= ua. (2.6)

Coordinate Formulas for the Horizontal and Vertical Projections. We
now embark on the development of coordinate formulas for the controlled La-
grangian. To do this, we first develop coordinate formulas for the horizontal and
vertical projections.

For a vector v = (ẋα, θ̇a), and suppressing the base point (xα, θa) in the notation,
its horizontal and vertical projections are verified to be

Hor(v) = (ẋα,−gabgαbẋ
α); Ver(v) = (0, θ̇a + gabgαbẋ

α), (2.7)

where, as is standard practice, gab denotes the inverse of the matrix gab. Notice that
v = Hor(v) + Ver(v), as it should.

These formulas can also be obtained systematically using the formulas for the
mechanical connection in terms of the locked inertia tensor, as in, for example,
Marsden [1992]. (In the present context, the locked inertia tensor is the tensor
Iab = gab.)
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The τ-horizontal and Vertical Projections. We shall write the given horizon-
tal one form τ in coordinates as τa = τa

αdx
α. Thus,

[τ(v)]Q = (0, τa
αẋ

α). (2.8)

The corresponding τ -horizontal and vertical operators are checked to be

Horτ (v) = (ẋα,−gabgαbẋ
α − τa

αẋ
α); Verτ (v) = (0, θ̇a + gabgαbẋ

α + τa
αẋ

α). (2.9)

Coordinate Formula for Lτ,σ. We shall first develop a useful coordinate formula
for Lτ,σ. We write down the coordinate form of the definition followed by the
coordinate form of the identity given in Theorem 2.1.

First of all, we write down the coordinate formula for Lτ,σ using the definition,
namely formula (2.1) with gρ = g, along with the preceding coordinate formulas for
the horizontal and vertical projections to get:

Lτ,σ =
1
2
σαβẋ

αẋβ + σaβẋ
β(−gabgαbẋ

α − τa
αẋ

α)

+
1
2
σab(gacgαcẋ

α + τa
αẋ

α)(gbdgβdẋ
β + τ b

βẋ
β)

+
1
2
gab(θ̇a + gacgαcẋ

α + τa
αẋ

α)(θ̇b + gbdgβdẋ
β + τ b

βẋ
β) − V. (2.10)

Remark on Notation. We use the notation σab for the ab components of gσ and,
later on, shall likewise use notation ρab for the ab components of gρ.

Returning to the preceding calculation, formula (2.3) gives

Lτ,σ = L(xα, ẋβ, θ̇a + τa
αẋ

α) +
1
2
σabτ

a
ατ

b
βẋ

αẋβ. (2.11)

The equivalence of these two formulas may also be checked by a direct calculation
in this case.

The Controlled Conserved Quantity. From (2.10) or (2.11), and (2.4), we find
that the associated controlled conserved quantity is given by

J̃a =
∂Lτ,σ

∂θ̇a
=

∂L

∂θ̇a
(xα, ẋα, θ̇b + τ b

αẋ
α)

= gαaẋ
α + gab(θ̇b + τ b

αẋ
α). (2.12)

We can also write this as

J̃a = Ja + gabτ
b
αẋ

α. (2.13)
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Matching Euler-Lagrange Expressions. The θa–Euler-Lagrange equations for
the controlled Lagrangian, which are equivalent to the controlled conservation law,
will be used in §3.2 to determine the control law, consistent with the fact that this
is the direction in which we are assuming we have control actuation.

Thus, our first job is to make sure that the xα–Euler-Lagrange equations for L
and for Lτ,σ agree. To do this, we let

Ex(Lτ,σ) =
d

dt

∂Lτ,σ

∂ẋα
− ∂Lτ,σ

∂xα
(2.14)

denote the xα-component of the Euler-Lagrange expression for our controlled La-
grangian Lτ,σ.

Assume that the Euler-Lagrange equations for L hold. We want to see under
what matching conditions they also hold for Lτ,σ. From (2.11), and subtracting the
Euler-Lagrange expression for L (this expression is zero by assumption) from that
for Lτ,σ, we have,

Ex(Lτ,σ) =
d

dt

[
∂L

∂ẋα
(xδ, ẋδ, θ̇a + τa

β ẋ
β) − ∂L

∂ẋα
(xδ, ẋδ, θ̇a)

]

−
[
∂L

∂xα
(xδ, ẋδ, θ̇a + τa

β ẋ
β) − ∂L

∂xα
(xδ, ẋδ, θ̇a)

+
∂L

∂θ̇b
(xδ, ẋδ, θ̇a + τa

β ẋ
β)τ b

δ,αẋ
δ

]

+
d

dt

[
∂L

∂θ̇b
(xδ, ẋδ, θ̇a + τa

β ẋ
β)τ b

α + σacτ
a
β τ

c
αẋ

β

]

− ∂

∂xα

[
1
2
σabτ

a
δ τ

b
βẋ

δẋβ

]
(2.15)

in which the partial derivatives with respect to L denote slot derivatives, where
summation over repeated indices is understood and where τ b

δ,α = ∂τ b
δ/∂x

α. We are
assuming that the variables θa are cyclic for the controlled Lagrangian. Correspond-
ingly, we are assuming that τa

β depends only on xα in this calculation and those that
follow.

Using (2.4), we have

∂L

∂ẋα
= gαβẋ

β + gαaθ̇
a (2.16)

and

∂L

∂xα
=

1
2
gβδ,αẋ

βẋδ + gδb,αẋ
δ θ̇b +

1
2
gab,αθ̇

aθ̇b − V,α (2.17)

where we again use commas to denote partial differentiation of the components of
the metric tensor (mass matrix) and V ; again, these are functions only of xα —and
not of θa since the θa variables are assumed cyclic.
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Using (2.16) in the first line and (2.17) in the second line of (2.15), the Euler-
Lagrange expression Ex(Lτ,σ) simplifies as follows:

Ex(Lτ,σ) =
d

dt

[
gαaτ

a
β ẋ

β
]
−

[
gδb,αẋ

δτ b
βẋ

β +
1
2
gab,α(2τa

β ẋ
β θ̇b + τa

β ẋ
βτ b

δ ẋ
δ)

]

− ∂L

∂θ̇b
(xδ, ẋδ, θ̇a + τa

β ẋ
β)τ b

δ,αẋ
δ

+
d

dt

[
∂L

∂θ̇b
(xα, ẋα, θ̇a + τa

αẋ
α)τ b

α + σabτ
a
β τ

b
αẋ

β

]
− ∂

∂xα

[
1
2
σabτ

a
δ τ

b
βẋ

δẋβ

]
.

(2.18)

Using the controlled conservation law (2.12) in the third and fourth lines, this be-
comes

Ex(Lτ,σ) =
d

dt

[
gαaτ

a
β ẋ

β
]
−

[
gδb,αẋ

δτ b
βẋ

β +
1
2
gab,α(2τa

β ẋ
β θ̇b + τa

β ẋ
βτ b

δ ẋ
δ)

]

− J̃bτ
b
δ,αẋ

δ +
d

dt

[
J̃bτ

b
α + σabτ

a
β τ

b
αẋ

β
]
− ∂

∂xα

[
1
2
σabτ

a
δ τ

b
βẋ

δẋβ

]
. (2.19)

Since θ is cyclic for the controlled Lagrangian, the controlled conserved quantity
is actually conserved. Thus, the above expression becomes:

Ex(Lτ,σ) =
d

dt

[
gαaτ

a
β ẋ

β
]
−

[
gδb,αẋ

δτ b
βẋ

β +
1
2
gab,α(2τa

β ẋ
β θ̇b + τa

β ẋ
βτ b

δ ẋ
δ)

]

+ J̃b[τ b
α,δ − τ b

δ,α]ẋδ +
d

dt

[
σabτ

a
β τ

b
αẋ

β
]
− ∂

∂xα

[
1
2
σabτ

a
δ τ

b
βẋ

δẋβ

]
. (2.20)

Some Assumptions. Now we are ready to introduce some crucial assumptions
that are designed to make the preceding Euler-Lagrange expression vanish. The
first of these is:

Assumption M-1. τ b
α = −σabgαa.

This condition says, roughly speaking, that τ b
α are chosen to be the components

of the “mechanical connection” formed out of g and gσ. Of course, the condition
can be equivalently written as

σabτ
b
α = −gαa. (2.21)
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With Assumption M-1, the above expression becomes

Ex(Lτ,σ) = −
[
gδb,αẋ

δτ b
βẋ

β +
1
2
gab,α(2τa

β ẋ
β θ̇b + τa

β ẋ
βτ b

δ ẋ
δ)

]

+ J̃b[τ b
α,δ − τ b

δ,α]ẋδ − ∂

∂xα

[
1
2
σabτ

a
δ τ

b
βẋ

δẋβ

]

=
[
gδb,αẋ

δσbcgβcẋ
β − 1

2
gab,α(2τa

β ẋ
β θ̇b + τa

β ẋ
βτ b

δ ẋ
δ)

]

+ J̃b[τ b
α,δ − τ b

δ,α]ẋδ − ∂

∂xα

[
1
2
gδbσ

bcgβcẋ
δẋβ

]

= −1
2

[
gδbσ

bc
,αgβcẋ

δẋβ + gad,α(2τa
β ẋ

β θ̇d + τa
β ẋ

βτd
δ ẋ

δ)
]

+ J̃b[τ b
α,δ − τ b

δ,α]ẋδ (2.22)

Using the controlled conserved quantity we get

θ̇d = gdb
(
J̃b − [gδb + gbeτ

e
δ ]ẋδ

)
(2.23)

and hence the preceding expression for Ex(Lτ,σ) becomes

Ex(Lτ,σ) = −1
2

[
gδbσ

bc
,αgβc − 2gad,ατ

a
βg

bdgδb − gad,ατ
a
β τ

d
δ )

]
ẋδẋβ

+ J̃b[τ b
α,δ − τ b

δ,α − gdbgad,ατ
a
δ ]ẋδ (2.24)

Using the assumption M-1 again to eliminate τ in the first line, we get

Ex(Lτ,σ) = −1
2
gδbgβc

[
σbc

,α + 2gad,ασ
acgbd − gad,ασ

acσdb)
]
ẋδẋβ

+ J̃b[τ b
α,δ − τ b

δ,α − gdbgad,ατ
a
δ ]ẋδ

=
1
2
gδbgβcσ

ac
[
σbd(σad,α + gad,α) − 2gbdgad,α)

]
ẋδẋβ

+ J̃b[τ b
α,δ − τ b

δ,α − gdbgad,ατ
a
δ ]ẋδ (2.25)

Now we are ready to state our second two assumptions:

Assumption M-2. σbd(σad,α + gad,α) = 2gbdgad,α

Assumption M-3. τ b
α,δ − τ b

δ,α − gdbgad,ατ
a
δ = 0.

The following theorem gives sufficient conditions for matching.

Theorem 2.2 (First Matching Theorem) Under Assumptions M-1, M-2, M-
3, the Euler-Lagrange equations for the controlled Lagrangian Lτ,σ given by (2.3)
coincide with the controlled Euler-Lagrange equations (2.6).

Simplified Matching Assumptions. Consider the following

1. σab = σgab for a constant σ (this defines σab),
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2. gab is independent of xα (a condition on the metric tensor),

3. τ b
α = −(1/σ)gabgαa (this defines τ b

α),

4. gαa,δ = gδa,α (a second condition on the metric).

If these hold, then all three of M-1, M-2 and M-3 hold, so we have matching.
The second and fourth of the Simplified Matching Assumptions imply that the
mechanical connection gabgaα for the given system is flat, i.e., systems that satisfy
the Simplified Matching Assumptions lack gyroscopic forces. The σ in this case is a
free variable and can be interpreted as the control gain. These simplified conditions
hold for the case of the inverted pendulum on a cart discussed in §1.2.

As we have mentioned, this theorem is generalized to incorporate the gρ terms
in companion papers, so that we will find a more general matching theorem.

The following remark illustrates that care must be taken in relating the controlled
to the uncontrolled case: if one sets σ equal to the identity in the first simplified
matching assumption, the τ -horizontal and τ -vertical projections (2.9) do not reduce
to the uncontrolled projections (2.7), but to the trivial projections. Rather, to
recover the original projections, the one form τ should be taken to be trivial.

3 The Control Law and Stabilization

Now that we have achieved matching in the Euler-Lagrange equations for the shape
variables, we can proceed to determine the control law and then conditions under
which stabilization is achieved. We continue to restrict to the case in which gρ = g.

3.1 Determination of the Control Law

The control law is determined from the difference between the θa Euler-Lagrange
equations for the controlled and the uncontrolled Lagrangians. In our case we have
arranged to not break the symmetry, and so we may determine the control law from
the difference between the two conservation laws.

To do this, we start with the relation

J̃a = Ja + gabτ
b
αẋ

α, (3.1)

and since J̃a is conserved, we may write

ua =
d

dt
Ja =

d

dt
J̃a −

d

dt

(
gabτ

b
αẋ

α
)

= − d

dt

(
gabτ

b
αẋ

α
)

= −
(
gab,δτ

b
αẋ

αẋδ + gabτ
b
α,δẋ

αẋδ + gabτ
b
αẍ

α
)

(3.2)

Our final control law does not depend on accelerations: we eliminate the accel-
erations ẍα from this expression for the control by making use of the fact that the
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Euler-Lagrange equations for x hold (for both L and Lτ,σ). Using (2.4), and the
fact that θa is cyclic, the explicit xα–Euler-Lagrange equation is

gαβẍ
β +

(
gαβ,γ − 1

2
gβγ,α

)
ẋβẋγ + (gαa,γ − gγa,α) ẋγ θ̇a

− 1
2
gab,αθ̇

aθ̇b + gαaθ̈
a = − ∂V

∂xα
. (3.3)

Next, we use the θa–Euler-Lagrange equation for the controlled Lagrangian to de-
termine θ̈a. That is, we simply write out the conservation law for J̃a. Setting the
time derivative of J̃a from equation (2.12) equal to zero, we get(

gαa,δ + gab,δτ
b
α + gabτ

b
α,δ

)
ẋαẋδ + gαaẍ

α + gab,δ θ̇
aẋδ + gabθ̈

b + gabτ
b
αẍ

α = 0 (3.4)

and hence

θ̈d = −gda
[(

gαa,δ + gab,δτ
b
α + gabτ

b
α,δ

)
ẋαẋδ + gαaẍ

α + gab,δ θ̇
bẋδ

]
− τd

αẍ
α. (3.5)

Substituting (3.5) into (3.3) gives(
gαβ − gαdτ

d
β − gαdg

dagβa

)
ẍβ

+
[
gαβ,γ − 1

2
gβγ,α − gαdg

da
(
gβa,γ + gab,γτ

b
β + gabτ

b
β,γ

)]
ẋβẋγ

+
(
gαa,γ − gγa,α − gαdg

dbgab,γ

)
ẋγ θ̇a − 1

2
gab,αθ̇

aθ̇b = − ∂V

∂xα
. (3.6)

The control law is now determined by substituting this equation into (3.2). So far,
our derivation is rather general, but we can simplify things somewhat by using our
assumptions. Using M-1 and M-3, (3.6) simplifies to(

gαβ + gαd

[
σda − gda

]
gβa

)
ẍβ

+
[
gαβ,γ − 1

2
gβγ,α − gαdg

dagβa,γ − gαdτ
d
β,γ

]
ẋβẋγ

+
(
gαa,γ − gγa,α − gαdg

dbgab,γ

)
ẋγ θ̇a − 1

2
gab,αθ̇

aθ̇b = − ∂V

∂xα
. (3.7)

Now let

Aαβ = gαβ + gαd

[
σda − gda

]
gβa (3.8)

Assume that this matrix is invertible and let Aαβ denote its inverse. Hence,

ẍδ = −Aδα

[
gαβ,γ − 1

2
gβγ,α − gαdg

dagβa,γ − gαdτ
d
β,γ

]
ẋβẋγ

−Aδα
(
gαa,γ − gγa,α − gαdg

dbgab,γ

)
ẋγ θ̇a

+ Aδα 1
2
gab,αθ̇

aθ̇b −Aδα ∂V

∂xα
. (3.9)

21



Notice also that under M-3 gab,δτ
b
α is skew-symmetric in the δ , α indices and

hence the first term on the right hand side of the control law (3.2) vanishes. Sub-
stitution of (3.9) into the control law gives

ua = −
{
gabτ

b
β,γ − gabτ

b
δA

δα

[
gαβ,γ − 1

2
gβγ,α − gαdg

dagβa,γ − gαdτ
d
β,γ

]}
ẋβẋγ

− gabτ
b
δA

δα

[
−

(
gαc,γ − gγc,α − gαdg

dbgcb,γ

)
ẋγ θ̇c +

1
2
gcb,αθ̇

cθ̇b − ∂V

∂xα

]
.

(3.10)

One may eliminate θ̇a if desired by making use of the relation

θ̇b = gabJ̃a −
(
gabgαa + τ b

α

)
ẋα = gabJ̃a −

[
gab − σab

]
gαaẋ

α (3.11)

Under the Simplified Matching Assumptions given after the First Matching Theorem
2.2, the coefficients of the terms multiplying θ̇ vanish and the formula for the control
becomes

ua =
1
σ

{
gβa,γ − gδaA

δα

[
gαβ,γ − 1

2
gβγ,α −

(
1 − 1

σ

)
gαdg

dagβa,γ

]}
ẋβẋγ

− 1
σ
gδaA

δα ∂V

∂xα
(3.12)

where

Aαβ = gαβ − gαd

(
1 − 1

σ

)
gdagβa. (3.13)

Note that the control law only involves position and velocity feedback, not ac-
celeration feedback.

Proposition 3.1 Suppose the conditions of Theorem 2.2 hold (i.e., the First Match-
ing Theorem holds with the controlled Lagrangian Lτ,σ defined by (2.3)). Suppose
that Aαβ defined by (3.8) is invertible. Then, (3.10) provides the corresponding
feedback control law u as a function of positions and velocities only (i.e. there is
no acceleration feedback). Furthermore, in the case that the Simplified Matching
Assumptions hold, this feedback law simplifies to that given in (3.12) which is inde-
pendent of the velocities of the symmetry variables.

The above calculations make intrinsic geometric sense. For example, and we shall
need this remark below, the matrix Aαβ may be interpreted as the components of the
horizontal metric (the shape space projected metric) for the controlled Lagrangian.
Under Assumption M-1, the formula for the horizontal part of the metric is given
by (see equation (2.9))

Horτ (vq) =
(
ẋα,

(
σab − gab

)
gαbẋ

α
)
. (3.14)
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Intrinsically, the calculation of the horizontal kinetic energy expression is as follows
(see the proof of the first matching theorem):

Khorτ (vq) :=
1
2

[gσ(Horτvq,Horτvq)]

=
1
2

[gσ(Hor(v) − τ(v)Q,Hor(v) − τ(v)Q)]

=
1
2

[g(Hor(v),Hor(v)) + gσ(τ(v)Q, τ(v)Q)] . (3.15)

In coordinates,

1
2
g(Hor(v),Hor(v)) =

1
2
gαβẋ

αẋβ − gaαg
abgbβẋ

αẋβ +
1
2
gaαg

abgbβẋ
αẋβ

=
1
2

(
gαβ − gaαg

abgbβ

)
ẋαẋβ (3.16)

while under Assumption M-1 we have

1
2
gσ(τ(v)Q, τ(v)Q) =

1
2
σab

(
−σadgdα

) (
−σbegeβ

)
ẋαẋβ =

1
2
σabgaαgbβẋ

αẋβ. (3.17)

Adding these gives

Proposition 3.2 The τ -horizontal kinetic energy is given by

Khorτ (vq) =
1
2
Aαβẋ

αẋβ. (3.18)

3.2 Stabilization of Relative Equilibria.

Recall that a relative equilibrium for a mechanical system with symmetry is a solu-
tion of the equations that is simultaneously a one-parameter group orbit. When the
symmetry groups are Euclidean groups, examples of these are uniformly rotating
and translating solutions. A general introduction to and basic facts about relative
equilibria can be found in Marsden [1992].

Since τ is horizontal, for any Lie algebra element ξ ∈ g, we have τ(ξQ(q)) = 0.
This implies the identity L(ξQ(q)) = Lτ,σ(ξQ(q)).

Given a Lagrangian L and a Lie algebra element ξ ∈ g, the function Lξ(q) :=
L(ξQ(q)) is called the associated locked Lagrangian. Thus, from the identity L(ξQ(q)) =
Lτ,σ(ξQ(q)) noted in the preceding paragraph, we conclude that L and Lτ,σ have
the same locked Lagrangian.

It is known that relative equilibria are the critical points of the locked Lagrangian
(see Lewis [1992], Prop 2.3 and Wang and Krishnaprasad [1992]); this is a general-
ization of the classical criterion, going back to Routh around 1850, which states that
relative equilibrium are critical points of either the amended or augmented potential.1

Intuitively, the modification of the Lagrangian to the controlled Lagrangian, while
affecting the kinetic energy, does not affect the augmented potential. Therefore, we
conclude the following:

1The amended potential is recalled below in Equation (3.19). The augmented potential is given
by a similar formula using generalized angular velocities rather than angular momenta.

23



Proposition 3.3 The relative equilibria for L and Lτ,σ are the same.

One can now use the energy momentum method (Simo, Lewis, and Marsden
[1991], Marsden [1992]), especially its Lagrangian formulation (Lewis [1992], Wang
and Krishnaprasad [1992]) to ascertain stability.

From general considerations, we know that a relative equilibrium is a fixed point
of the reduced dynamics on shape space. As such, it must satisfy ẋα = 0. To
emphasize that this corresponds to an equilibrium value, we shall sometimes write
the equilibrium point as xe, or in coordinates, xα

e . Consequently, from equation
(2.13), the momentum at a relative equilibrium is the same for the free and for the
controlled system. We call this value µ, with components µa, or if there is danger
of confusion, by µe

a, where the superscript e refers to the equilibrium value.
Next, we give a criterion for stability of control systems that are described by a

controlled Lagrangian of the form Lτ,σ given by (2.3).

Theorem 3.4 Suppose the conditions of Theorem 2.2 hold (i.e., the First Matching
Theorem holds with the controlled Lagrangian Lτ,σ). A point xα

e is a relative equilib-
rium if and only if it is a critical point of Vµ where µ is the value of the equilibrium
momentum and where Vµ is the amended potential defined by

Vµ(xα) = V (xα) +
1
2
gabµaµb. (3.19)

Then, the system is stabilized about the given equilibrium if the second variation
of

Eµ :=
1
2
Aαβẋ

αẋβ + Vµ (3.20)

(as a function of the variables xα and where Aαβ is defined in equation (3.8)) eval-
uated at the equilibrium is definite.

Proof. The proof proceeds in a standard way following the energy-momentum
method by showing that Eµ is the reduced expression for the energy of the system.
This calculation is done for a general Lagrangian in, for example, Marsden [1992],
and is here applied to Lτ,σ using the fact, proved earlier (see equation (3.18)) that
the horizontal part of the τ -kinetic energy is, under Assumption M-1, 1

2Aαβẋ
αẋβ to

get the result. �

Remarks.

1. In the special case when gab is constant, the extra term in the amended po-
tential is a constant and so does not contribute to the second variation.

2. One has stability modulo the (Abelian) group G in the unreduced space. (See
Leonard and Marsden [1997] for more sophisticated applications in which one
gets stability modulo a subgroup.) Note further that since the equilibrium of
interest for a balance system is a maximum of the potential energy and we
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are not modifying the potential here, our controller will in general lead to a
local maximum in the reduced space. As discussed in §5 the addition of active
dissipation then leads to a robust asymptotically stable equilibrium.

3. Note that the energy momentum function Eµ depends on the system gains.

4. If the system has an additional symmetry group, then one can, of course, use
the energy momentum method to study stability of relative equilibria for that
group. We shall see an example of a system with another symmetry group in
the inverted spherical pendulum below. The controlled Euler–Poincaré equa-
tions may also be viewed this way—these are studied in companion papers.

4 Inverted Pendula

In this section we illustrate the results of the preceding sections with two examples.
In the first subsection, we re-examine the inverted pendulum on a cart and show
that a direct application of the matching theorem of §2 and stabilization theorem of
§3 produce the stabilizing control law derived in §1.2. In the second subsection we
show how to apply these techniques to the case of the inverted spherical pendulum.

4.1 Reprise of the Inverted Pendulum on a Cart

Recall that the configuration space is Q = S ×G where S = S1 describes the angle
φ of the pendulum and G = R describes the position s of the cart. When using the
general theory, keep in mind that x in the general theory corresponds to φ here and
that θ in the general theory corresponds to s here.

The Lagrangian. The Lagrangian is

L(φ, φ̇, ṡ) =
1
2

[ φ̇ ṡ ]
[

α β cosφ
β cosφ γ

] [
φ̇
ṡ

]
+ D cosφ

where α, β ,γ and D are as defined in §1.2.

Controlled Lagrangian and Matching. We apply Theorem 2.2 to get the con-
trolled Lagrangian that matches the controlled Euler-Lagrange equations (1.10).
Since G = R is one-dimensional, both gab and σab are scalars. We have that gab = γ.
Let σab = σγ where σ is a dimensionless scalar. Since gab is a constant, to satisfy
M-2 we should also take σ to be a constant. To satisfy M-1, we choose

τ s
φ = − 1

σγ
β cosφ.

M-3 is then trivially satisfied, and the controlled Lagrangian provides matching.
In fact, the Simplified Matching Assumptions hold. Following (2.2) the controlled
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Lagrangian is

Lτ,σ = L(φ, φ̇, ṡ− β

σγ
cosφφ̇) +

1
2
σγ

(
β

σγ
cosφφ̇

)2

+ D cosφ

=
1
2
(αφ̇2 + 2β cosφ(ṡ− β

σγ
cosφφ̇)φ̇ + γ(ṡ− β

σγ
cosφφ̇)2) +

1
2
β2

σγ
cos2 φφ̇2

+ D cosφ. (4.1)

Note that defining κ := −1/σ and substituting for σ in (4.1), we recover the con-
trolled Lagrangian of (1.11), where k(φ) is defined by (1.17).

Control Law. Using (3.2), the control law is

u =
d

dt

(
β

σ
cosφφ̇

)
= − d

dt
(κβ cosφφ̇).

We can use the general formula (3.12) to calculate this control law with the accel-
eration term φ̈ eliminated.

In this case, −gabτ
b
µ,δẋ

µẋδ = κβ sinφφ̇2 , the matrix (3.8) becomes the scalar

A = α− β2

γ
(1 + κ) cos2 φ ,

and

gabτ
b
δ

[(
gµν,γ − 1

2
gνγ,µ − gµcτ

c
ν,γ − gµcg

cbgνb,γ

)
ẋν ẋγ + V,µ

]

= (κβ cosφ)
[(

β2

γ
cosφ sinφ +

β2κ

γ
cosφ sinφ

)
φ̇2 + D sinφ

]
.

Substituting into the general formula (3.12), we obtain the nonlinear pendulum-cart
control law (1.18).

Stabilization. Following Theorem 3.4, the relative equilibrium φ = φ̇ = ṡ = 0 is
stable if the second variation of

1
2

(
α + β2 cos2 φ

(
1
σγ

− 1
γ

))
φ̇2 −D cosφ

is definite when evaluated at this equilibrium. This requires that the matrix(
D 0
0 α + β2

(
1

σγ − 1
γ

) )

be positive or negative definite. Since D = −mgl < 0, the matrix will be negative
definite if

α + β2

(
1
σγ

− 1
γ

)
< 0.
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i.e., if

1
σ
<

β2 − αγ

β2
.

Equivalently, using κ = −1/σ, the relative equilibrium is stable if

κ >
αγ − β2

β2
=

M

m
,

which is the stability condition (1.19).

4.2 The Spherical Pendulum

In this section we consider the controlled spherical pendulum on a cart in the xy-
plane. This generalizes the planar pendulum example and provides a highly nontriv-
ial example of matching and stabilization in the case where we only need a controlled
Lagrangian of the form Lτ,σ. In this case we have independent controls that can
move the cart in the x and y directions.

Consider then a spherical pendulum with bob of mass m on a movable base of
mass M , as in Figure 4.1. The base is idealized to be a point (or a symmetric planar
body) as this simplifies the calculations without affecting the essential dynamics.

m
g

φ

(x, y)
x

z

y

q

M

ux

uy

Figure 4.1: The inverted spherical pendulum on a cart.

The Lagrangian. The free Lagrangian for the spherical pendulum on a cart is

L =
1
2
M(ẋ2 + ẏ2) +

1
2
m

(
ẋ2 + ẏ2 + r2φ̇2 + r2 sin2 φθ̇2 + 2r cosφφ̇(ẋ cos θ + ẏ sin θ)

2r sinφθ̇(−ẋ sin θ + ẏ cos θ)
)

+ mgr(1 − cosφ) (4.2)
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where φ and θ are spherical coordinates measured in a frame with origin fixed on the
(point) cart, but with orientation that remains fixed with respect to inertial space.
φ represents the deflection from the vertical while θ represents the angle between the
pendulum and the x-axis. The controlled equations are the Lagrangian equations
with control forces ux and uy in the x and y equations respectively. Note that the
Lagrangian is cyclic in x and y. However, the system is in fact SE(2) invariant, as
one would expect physically.

Consider the action of SE(2) on R
2 × S1 given by

(x, y, θ) → (x cosα− y sinα + a, x sinα + y cosα + b, θ + α) (4.3)

with induced action on TSE(2)

(ẋ, ẏ, θ̇) → (ẋ cosα− ẏ sinα, ẋ sinα + ẏ cosα + b, θ̇) . (4.4)

A computation shows that the Lagrangian is indeed invariant under this action (thus
giving rise to three conservation laws).

However, for the purposes of applying the theory discussed above we will assume
the symmetry directions are the x and y directions ignoring for the moment the
additional S1 symmetry. We shall return to this later in this section. The key point
here is that the controls act in the x and y directions and pick out the part of the
symmetry group to be used in the matching theory. The remainder of the group is
dealt with when doing stabilization.

Controlled Lagrangian and Matching. Note that twice the kinetic energy for
the spherical pendulum on the cart can be written as




θ̇

φ̇
ẋ
ẏ




T 


mr2 sin2 φ 0 −mr sinφ sin θ mr sinφ cos θ
0 mr2 mr cosφ cos θ mr cosφ sin θ

−mr sinφ sin θ mr cosφ cos θ m + M 0
mr sinφ cos θ mr cosφ sin θ 0 m + M







θ̇

φ̇
ẋ
ẏ


 .

(4.5)

So, it can easily be seen that gab is constant and, in addition, since

∂

∂θ
(cosφ cos θ) =

∂

∂φ
(− sinφ sin θ),

∂

∂θ
(cosφ sin θ) =

∂

∂φ
(sinφ cos θ),

gaα,δ = gδa,α holds. We choose σab = σgab, where σ is a constant, and τ b
α =

−(1/σ)gabgαa. Then, Assumptions M-1, M-2 and M-3 all hold (since the Simplified
Matching Assumptions hold) and we get matching by Theorem 2.2. In this case, we
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have

τx
φ = − mr

σ(M + m)
cosφ cos θ

τx
θ = − mr

σ(M + m)
(− sinφ sin θ)

τy
φ = − mr

σ(M + m)
cosφ sin θ

τy
θ = − mr

σ(M + m)
sinφ cos θ

Using Theorem 2.1, the controlled Lagrangian is given by the free Lagrangian with
velocity shifts

ẋ → ẋ− mr

σ(M + m)
(cosφ cos θφ̇− sinφ sin θθ̇)

ẏ → ẏ − mr

σ(M + m)
(cosφ sin θφ̇ + sinφ cos θθ̇)

and with the addition of the term

1
2
gσ(τ(v)Q, τ(v)Q) =

1
2

m2r2

σ(M + m)

{
(cosφ cos θφ̇− sinφ sin θθ̇)2

+ (cosφ sin θφ̇ + sinφ cos θθ̇)2
}

=
1
2

m2r2

σ(M + m)
(cos2 φφ̇2 + sin2 φθ̇2) . (4.6)

Control Law. Using (3.2), the control law is

ux = − d

dt
(gxxτ

x
α ẋ

α + gxyτ
y
αẏ

α)

=
d

dt

mr

σ
(cosφ cos θφ̇− sinφ sin θθ̇),

uy = − d

dt
(gyxτ

x
α ẋ

α + gyyτ
y
αẏ

α)

=
d

dt

mr

σ
(cosφ sin θφ̇ + sinφ cos θθ̇).

We can use the general formula (3.12) to calculate this control law with the accel-
eration terms eliminated. We begin by computing the matrix (3.8) and find

Aαβ =




mr2 sin2 φ−
(

1 − 1
σ

)
m2r2

M + m
sin2 φ 0

0 mr2 −
(

1 − 1
σ

)
m2r2

M + m
cos2 φ


 .

(4.7)

29



We now compute successively the terms in (3.12). Consider firstly gaβ,γ ẋ
βẋγ . We

have

gxβ,γ ẋ
βẋγ = −mr

(
sinφ cos θ(θ̇2 + φ̇2) + 2 cosφ sin θθ̇φ̇

)
gyβ,γ dotxβẋγ = mr

(
− sinφ sin θ(θ̇2 + φ̇2) + 2 cosφ cos θθ̇φ̇

)
. (4.8)

We next consider the expression

Bα ≡
[
gαβ,γ − 1

2
gβγ,α −

(
1 − 1

σ

)
gαdg

dagβa,γ

]
ẋβẋγ . (4.9)

For α = θ this yields the expression

Bθ ≡ 2mr2 sinφ cosφθ̇φ̇−
(

1 − 1
σ

)
2m2r2

M + m
sinφ cosφθ̇φ̇, (4.10)

and for α = φ we obtain

Bφ ≡ −mr2 sinφ cosφθ̇2 +
(

1 − 1
σ

)
m2r2

M + m
sinφ cosφ

(
θ̇2 + φ̇2

)
. (4.11)

Finally, we consider the expression gaδA
δαV,α. We have

gxδA
δαV,α = −m2r2g

Aφφ
cosφ sinφ cos θ

gyδA
δαV,α = −m2r2g

Aφφ
cosφ sinφ sin θ. (4.12)

Using equations (4.7)–(4.12) we obtain the complete control law:

ux =
−m2r3

σAφφ
sinφ cos θ

(
sin2 φθ̇2 + φ̇2 − g

r
cosφ

)
(4.13)

uy =
−m2r3

σAφφ
sinφ sin θ

(
sin2 φθ̇2 + φ̇2 − g

r
cosφ

)
. (4.14)

Stabilization. We now use Theorem 3.4 to analyze stability of the pendulum
about its upright state, modulo motion in the plane. We have

1
2
Aαβẋ

αẋβ + V =
1
2
mr2

{(
1 +

m

M + m

(
1 − σ

σ

)
cos2 φ

)
φ̇2

+
(

1 +
m

M + m

(
1 − σ

σ

)
sin2 φ

)
θ̇2

}
−mgr(1 − cosφ) . (4.15)
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Note that this is independent of θ, reflecting an additional rotational symmetry
in this case. Consider the relative equilibrium φ = φ̇ = 0. Then, modulo the θ
directions, the second variation of (4.15) is given by the matrix


mr2

(
1 +

m

M + m

(
1 − σ

σ

))
0

0 mr2

(
m

M + m

(
1 − σ

σ

))
µ2 −mgr




where θ̇ = µ.
Setting σ = −1/κ as in the planar pendulum we thus have the following criteria

for stability:

• If µ = 0, we require (
1 − m

M + m
(κ + 1)

)
< 0

i.e. κ > M/m,

• If µ > 0, we need(
1 − m

M + m
(κ + 1)

)
and mr2

(
− m

M + m
(κ + 1)

)
µ2 −mgr

to have the same sign.

Remark. In this analysis, the extra S1 symmetry is simply ignored, even though
it does lead to an additional conservation law. This is because the straight upright
solution is a relative equilibrium for just the translation group. If we were trying
to stabilize an inverted uniformly rotating equilibrium then we would have to take
this extra S1 symmetry into account. In principle this is straightforward.

5 Asymptotic Stabilization

We now undertake to modify our stabilizing control laws to obtain asymptotic sta-
bilization. This is done, roughly speaking, by using the controls to simulate dissi-
pation. However, this is not entirely straightforward, primarily because the energy
for the controlled system we consider has a maximum at the relative equilibrium
in the x, ẋ variables, but the θ direction is still a symmetry direction as discussed
above. We will use the feedback controls to give active dissipation. (Note that one
can easily adjust the theory below if the controlled system has a minimum at the
relative equilibrium in the x, ẋ variables).
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5.1 Theory

To achieve our goal of converting a relative equilibrium that has been stabilized by
the method of controlled Lagrangians into an asymptotically stable one, we proceed
in the following step-by-step manner. The general technique here is, at least philo-
sophically, closely related to that of Åström and Furuta [1996]. Related ideas on
asymptotic stabilization may be found in Fradkov [1996] for example.

1. Start with the original controlled system

d

dt

∂L

∂ẋα
− ∂L

∂xα
= 0

d

dt

∂L

∂θ̇a
= ua. (5.1)

2. Choose a relative equilibrium, say x = xe for L that is to be stabilized. Let it
have momentum µ and velocity vector ξ, so that ξa = gabµb.

3. Break the control into a conservative and dissipative piece: ua = ucons
a + udiss

a ,
each piece of which will be defined as we proceed.

4. Assume that the hypotheses of the First Matching Theorem (2.2) hold and
choose ucons

a = −(d/dt)(gabτ
b
αẋ

α) according to the controlled Lagrangian sta-
bilizing techniques developed so far.

5. Rewrite the system system (5.1) with ua = ucons
a + udiss

a in terms of the con-
trolled Lagrangian. In fact, one has the following

Proposition 5.1 Using the procedure just outlined, the system (5.1) is equivalent
to

d

dt

∂Lτ,σ

∂ẋα
− ∂Lτ,σ

∂xα
= τ b

αu
diss
b

d

dt

∂Lτ,σ

∂θ̇a
= udiss

a . (5.2)

The explicit formula for the control law with accelerations eliminated is given by

ua = (rhs of (3.10)) + gabτ
b
δA

δαgαdg
dcudiss

c + udiss
a . (5.3)

Proof. The strategy is to repeat the derivation of the matching equations. First
of all, notice that the second equation in the set (5.2) can be equivalently written
as

d

dt
(J̃a) = udiss

a .

Subtracting this from the equation

d

dt
Ja = ucons

a + udiss
a
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shows that the second equation in (5.2) is equivalent to the equation

ucons
a =

d

dt

(
Ja − J̃a

)
which, as in §3.1 determines the control law ucons

a . The explicit formula (5.3) is
derived following the same steps as in §3.1 but with the zero on the right hand side
of (3.4) replaced with udiss

a .
Now one goes through the computation of the Euler-Lagrange expression E(Lτ,σ)

given in the proof of the First Matching Theorem. The critical thing is that in
equation (2.19) one does not replace the time derivative of J̃b with zero, but rather
with udiss

b . All other terms disappear, as in the proof of the First Matching Theorem,
leaving the first equation in (5.2) as stated. �

The Controlled Liapunov Function. The next step in the procedure is

6. Find a candidate Liapunov function (to be called Vµ).

Of course, it is natural to make use of the function that we employed to give us
stability. However, as we shall see, this function must be modified in a nontrivial
way.

Let Eτ,σ be the energy function for the controlled Lagrangian Lτ,σ and let Eξ
τ,σ

be the controlled augmented energy function defined by

Eξ
τ,σ = Eτ,σ − J̃bξ

b (5.4)

The augmented energy has the property that its restriction to a level set of the
momentum gives the energy function

Eµ :=
1
2
Aαβẋ

αẋβ + Vµ (5.5)

used in the stability test (this is seen by a direct calculation or by using facts from
the energy-momentum method or Routh reduction). Here, µ is the value of the
momentum at equilibrium and Vµ is the amended potential (see equation (3.19)).
Note that at equilibrium, the value of J̃a is thesame as that of Ja; i.e., µ̃ = µ.

A direct calculation using the system (5.2) shows that

d

dt
Eτ,σ = udiss

a

(
θ̇a + τa

αẋ
α
)
,

and therefore that

d

dt
Eξ

τ,σ = udiss
a

([
θ̇a − ξa

]
+ τa

αẋ
α
)
.

This can be rewritten in the following way:

d

dt
Eξ

τ,σ = gabudiss
a

(
J̃b − µb − gαbẋ

α
)
.
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We also note that

d

dt
Eµ = −gabudiss

a gαbẋ
α.

Here is a crucial point: as we have seen in the examples, the function Eξ
τ,σ has a

maximum in the variable x at the relative equilibrium in question. However, it will
typically have a minimum in the variable θ̇. To create a function with a maximum
in the variables (xα, ẋα, θ̇a − ξa) at the equilibrium, we form the following controlled
Liapunov function:

Vµ = Eµ − 1
2
λgab

(
J̃a − µa

) (
J̃b − µb

)
(5.6)

where λ is a positive constant.

The Time Derivative of Vµ. The next step is

7. Compute the time derivative of Vµ and examine its definiteness.

We will compute the time derivative of Vµ under the simplifying hypothesis that
gab is independent of xα. One gets

d

dt
Vµ = −gabudiss

a gαbẋ
α − λgabudiss

a

(
J̃b − µb

)
= −gabudiss

a

(
λ

[
J̃b − µb

]
+ gαbẋ

α
)

This leads us to the last step.

8. Define the dissipative control law

udiss
a = −cba

(
λ

[
J̃b − µb

]
+ gαbẋ

α
)

(5.7)

where cba is a positive definite, possibly xα dependent, control gain matrix.

Note that the dissipative control law depends linearly on θ̇a since J̃a does.
We are now ready to formulate our main result on asymptotic stabilization. We

will make the following assumption that is essentially a condition on the nontriviality
of the coupling terms gαa between the control variables θa and the internal variables
xα.

AS. Along no trajectory other than relative equilibria of the original
uncontrolled Euler-Lagrange equations for L is gαaẋ

α a constant.

Theorem 5.2 (Asymptotic Stabilization) Assume that the hypotheses of the
Stabilization Theorem 3.4 as well as the Simplified Matching Assumptions hold. As-
sume that the relative equilibrium xe , ẋe = 0 is a maximum of Eµ given by (3.20).
In addition, assume condition AS and that the dissipative control law is chosen as
in (5.7). Then the given relative equilibrium is asymptotically stable modulo the
action of the group.
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Proof. We have organized things so that the time derivative of Vµ is everywhere
nonnegative and it vanishes on the set M defined by

udiss
a = −cba

(
λ

[
J̃b − µb

]
+ gαbẋ

α
)

= 0.

The Invariance Principle (see Barbashin and Krasovskii [1952], LaSalle and Lefschetz
[1961], and Krasovskii [1963]) shows that all trajectories tend to the subset of M
that is dynamically invariant.

We claim that the dynamically invariant subset of M consists only of equilibria
(note that this set is group invariant). Suppose there is an invariant trajectory in
M. Then the time derivative of the above expression along such a trajectory is

−cba

(
λudiss

b +
d

dt
(gαbẋ

α)
)

= 0

and since we have a trajectory in M, this implies gαaẋ
α is a constant along these

trajectories. Thus, J̃a is also constant. Under the simplified matching hypotheses,
J̃a and Ja differ by terms that are constant along the trajectory, so the conservative
control is also zero. (One can check this directly for the pendulum). Thus, the
trajectory is a solution of the original Euler-Lagrange equations for L and so by our
assumption, this curve must be an equilibrium point. �

We remark that assumption AS can easily be checked in specific examples as
is done below. Part II of this paper examines in greater depth the theory behind
conditions like AS that guarantee that the Invariance Principle holds.

5.2 Example

We illustrate our control law design by using it to asymptotically stabilize the in-
verted pendulum on a cart of §1.2 and §4.1. The relative equilibrium of interest is
φ = φ̇ = 0 and ṡ = ξ (where ξ = µ/γ and µ is the desired momentum).

The explicit control law with dissipation is calculated according to (5.3) and
(5.7). For the pendulum we have that

gabτ
b
δA

δαgαdg
dcudiss

c + udiss
a =

α− β2

γ cos2 φ

α− β2

γ (1 + κ) cos2 φ
udiss

and from (5.7)

udiss = −c(λ(J̃ − µ) + β cosφφ̇)

= −c(λ(β cosφφ̇ + γṡ + κβ cosφφ̇− µ) + β cosφφ̇)

= −c((λ(κ + 1) + 1)β cosφφ̇ + λγ(ṡ− ξ))

where λ > 0 and c > 0 and µ = γξ. Substitution into (5.3) gives

u =
κβ sinφ(αφ̇2 + cosφD) − c

(
α− β2

γ cos2 φ
) (

(λ(κ + 1) + 1)β cosφφ̇ + λγ(ṡ− ξ)
)

α− β2

γ (1 + κ) cos2 φ
.

(5.8)
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We have already shown in §4.1 that the hypotheses of Theorem 3.4 hold with
the Simplified Matching Assumptions, and the relative equilibrium is a maximum
of Eµ. Condition AS holds since along no trajectories other than relative equilibria
of the uncontrolled system is d/dt(β cosφφ̇) = ucons = 0. Thus, by Theorem 5.2 the
control u defined by (5.8) makes the equilibrium of interest asymptotically stable.

Simulation. We demonstrate the control law with a MATLAB simulation of the
pendulum-cart system where m = 0.14 kg, M = 0.44 kg and l = 0.215 m. We let the
desired cart velocity be ξ = 0 m/s and choose control gains to be κ = 135(M/m),
λ = 0.01 and c = 50. Figure 5.1 shows plots of pendulum angle and velocity and
cart position and velocity for the system subject to our stabilizing controller with
dissipation added. The pendulum starts from a nearly horizontal position (φ(0) =
π/2− 0.2 rad), showing the large basin of attraction for the upright pendulum. We
have even given the pendulum an initial positive (downward) velocity of φ̇(0) = 0.1
rad/s. The cart’s initial position is s(0) = 0 m and initial velocity is ṡ(0) = −3
m/s. Note that the cart comes to rest as desired, but due to the large initial
acceleration needed to bring the pendulum to vertical, the cart drifts far from its
initial position. In Part II, we present the methodology for adding another term
(that breaks symmetry) to the control law in order to drive the cart position as
desired. We also address more general tracking problems.

At the bottom of Figure 5.1 we have included a plot of the control law u and
the Liapunov function Vµ as functions of time. The control law has an initial peak
to provide the initial large acceleration. The Liapunov function can be seen to be
initially negative and to strictly increase until it reaches zero at the equilibrium.
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43–64.

Brockett, R.W. [1976], Control theory and analytical mechanics, in 1976 Ames Research
Center (NASA) Conference on Geometric Control Theory, R. Hermann and C. Mar-
tin, eds., Lie Groups: History Frontiers and Applications, Vol. 7, Math. Sci. Press,
Brookline, Mass., USA.

Crouch, P. and A.J. van der Schaft [1987], Variational and Hamiltonian Control Systems,
Lecture Notes in Control and Informations Sciences 10, Springer Verlag.

Fradkov, A.L. [1996], Swinging control of nonlinear oscillations. International Journal of
Control 64, 1189-1202.

Getz, N.H. and J.E. Marsden [1995], Control for an autonomous bicycle, Proc. IEEE Int.
Conf. Robotics and Automation, Nagoya, Japan.

Hamberg, J. [1999] General matching conditions in the theory of controlled Lagrangians,
Proc. 38th IEEE Conf. Decision and Control, Phoenix, AZ,, 2519–2523.

Jalnapurkar, S.M. and J.E. Marsden [1999], Stabilization of relative equilibria II, Reg. and
Chaotic Dynamics, 3, 161–179.

Jalnapurkar, S.M. and J.E. Marsden [2000], Stabilization of relative equilibria, IEEE Trans.
Automat. Control , 45, 1483–1491.

Krasovskii N.N. [1963] Stability of Motion, Stanford University Press, (originally published
1959).

Koditschek, D.E. [1989], The application of total energy as a Lyapunov function for me-
chanical control systems, in Dynamics and Control of Multibody Systems (Brunswick,
ME, 1988), 131–157, Contemp. Math., 97, Amer. Math. Soc., Providence, RI.

Koditschek, D.E. and E. Rimon [1990], Robot navigation functions on manifolds with
boundary. Adv. in Appl. Math. 11, 412–442.

Koon, W.S. and J.E. Marsden [1998] The Poisson reduction of nonholonomic mechanical
systems, Reports on Math Phys. 42, 101–134.

Krasovskii N.N. [1963] Stability of Motion, Stanford University Press, (originally published
1959).

Krishnaprasad, P.S. [1985], Lie-Poisson structures, dual-spin spacecraft and asymptotic
stability, Nonl. Anal. Th. Meth. and Appl. 9, 1011–1035.

LaSalle, J.P. and S. Lefschetz [1961] Stability by Liapunov’s Direct Method, with Applica-
tions, New York, Academic Press.

38



Lewis, D.R. [1992], Lagrangian block diagonalization, Dyn. Diff. Eqns. 4, 1–42.
bottom-heavy

Leonard, N.E. [1997], Stabilization of underwater vehicle dynamics with symmetry-breaking
potentials, Systems and Control Letters 32, 35–42.

Leonard, N.E. and J.E. Marsden [1997], Stability and drift of underwater vehicle dynamics:
Mechanical systems with rigid motion symmetry, Physica D 105, 130–162.

Lewis, A.D. and R. Murray [1997], Configuration controllability of simple mechanical con-
trol systems, SIAM Journal on Control and Optimization 35, 766-790.

Marsden, J.E. [1992], Lectures on Mechanics. London Mathematical Society Lecture Note
Series, 174, Cambridge University Press.

Marsden, J.E. and T.S. Ratiu [1994], Symmetry and Mechanics. Texts in Applied Mathe-
matics, 17, Springer-Verlag, Second Edition, 1999.

Marsden, J.E. and J. Scheurle [1993a], Lagrangian reduction and the double spherical
pendulum, ZAMP 44, 17–43.

Marsden, J.E. and J. Scheurle [1993b], The reduced Euler-Lagrange equations, Fields In-
stitute Comm. 1, 139–164.

Ortega, R. A. Loria, R. Kelly, and L. Praly [1995], On passivity-based output feedback
global stabilization of Euler-Lagrange systems, Int. J. Robust and Nonlinear Control,
special issue on Control of Mechanical Systems, 5, no. 4, 313–325.

Simo, J.C., D.R. Lewis and J.E. Marsden [1991], Stability of relative equilibria I: The
reduced energy momentum method, Arch. Rat. Mech. Anal. 115, 15-59.

Van der Schaft, A.J. [1982], Hamiltonian dynamics with external forces and observations,
Mathematical Systems Theory 15, 145–168.

Van der Schaft, A. J. [1986], Stabilization of Hamiltonian systems, Nonlinear Analysis,
Theory, Methods and Applications, 10, 1021–1035.

Wang, L.S. and P.S. Krishnaprasad [1992], Gyroscopic control and stabilization, J. Non-
linear Sci. 2, 367–415.

Zenkov, D.V., A.M. Bloch, and J.E. Marsden [1998], The energy momentum method for
the stability of nonholonomic systems Dyn. Stab. of Systems., 13, 123–166.

39


