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Abstract-Nonlinear systems which are governed by  a  fmite  number 
of ordinary differential equat ions  with controls present const i tuk a 
large and  important c k  d model for proclical purposeg  In  the 
last few  years, there h x  been  considerable progress m our understmd- 
ing of this class of model. This is an expository paper devoted to sur- 
wying and explaining m e  of the main results currently  available. 
@ackgound material on m d d d  theory is included in ader to make 
&e paper more nearly seifcontained. 

I.  INTRODUCTION 
HE PURPOSE of this paper is to describe  some of the 
main theoretical results on  the class of input/output 
(I/O) models which take  the  form 

The  most significant  results  relate to a)  controllability  theory, 
b) 1/0 theory based on  Volterra series, c) isomorphism t h e e  
rem and bilineaxization, and  d)  stochastic  theory. 

Our intention is to give  an introduction to this  area. We will 
h e  a number of the  most  important results but we do  not 

give proofs unless there are  special  circumstances  which  make 
it desirable. The  material to be discussed has  a great deal of 
intuitive  content  but it also requires  some  technical develop 
ments.  In  fact,  the  solution of some of the  central problems 
required the  development of some new pure mathematics. In 
an attempt to present a  blend of intuition and solid theory, 
we have included in an appendix  the definition of many tech- 
nical terms  and also precise statements of a few background 
theorems. 
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In  spite of the  rather general form of nonlinear  systems we 
work with  here,  most of the results given here  could be stated 
in even greater  generality. For  example,  the restriction to  one 
input is completely  unnecessary; many results  apply to i = 
f ( x ,  u),  etc.  It seemed counterproductive  to move in this 
direction, however,  in  a paper  intended as an expository 
introduction. 

We introduce a few standard  notations. R n  stands  for 
n-dimensional Cartesian space with its  ordinary topology, 
if x E R n  then IlxII = ( x :   + x :  + . - * x ; ) ’ ’ * .  We use letters 
such as M and N for differentiable  manifolds (see appendix 
for definition). We always assume that f(-), g(.), and h ( . )  in 
(1) are infinitely  differentiable and  often we assume even 
more,  that  they  depend analytically on their arguments. We 
call systems of this latter  type linear-analytic systems. 

The special case  of bilinear systems 

i ( t )  = A x ( t )  + u ( t ) B x ( t ) ;  y ( t )  = (c, x ( t ) >  : x ( 0 )  = x o  

has received a great deal of attention in the  literature in the 
past few years.  Although this theory is,  itself, quite a suc- 
cessful generalization of the linear theory, it now appears that 
it should be viewed in  the  context of the more general class 
of systems described here. The reasons for this  are that  many 
of the principle  results on bilinear systems are true  for this 
wider class of systems  and the class of bilinear systems 
has the  unfortunate  property of not being closed under  compo- 
sition and feedback.  This is not  to say that bilinear  systems 
are of little  interest. On the  contrary,  they are the most 
interesting specialization of this theory,  and, in fact,  they a p  
pear from  the  point of view of the  theory  of linear-analytic 
systems to be even more general, and hence of greater interest, 
than was first expected. 

With regard to the  literature, there is a recent conference 
proceedings [ 11 which contains papers on  most of the topics 
to  be discussed here. In particular, the  paper by Lobry is rele 
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vant  for Section I1 on controllability. The  paper by  Sussmann 
is appropriate  for Section  IV.  The  papers by Clark and Elliott 
will provide the details  behind the material discussed in Sec- 
tion  IV. Specific citations will be  given in the  appropriate 
places. 

11. CONTROLLABILITY 
We begin with a discussion of a  result of Frobenius.  This 

theorem is fundamental to the geometric theory of control. 
In  fact, one  could say that it is t o  control  theory  what  the 
Cauchy-Lipschitz existence theorem  for  ordinary differential 
equations is to the  theory of autonomous models found in 
analytical  mechanics,  electrical circuit  theory,  etc. 

Suppose we have a single differential equation  in R” 

i ( t )  = f [ x ( t ) l ;   x ( 0 )   = x o  E R” ( 2 )  

with f smooth enough to define  a unique  solution.  In  the 
theory of differential  equations, one  ordinarily  indicates the 
value of the  solution  at lime r ,  by @ ( r ,  X O )  unless f is linear in 
which case the  exponential  function is displayed. I t  is more 
common  in differential  geometry to write (exp t f ) x o  instead 
of @ ( t ,  x o )  to indicate  the  solution of ( 2 )  regardless of whether 
f is linear or  not. We will see that  the disadvantage of the 
slight  ambiguity of this  notation is offset by a savings in the 
number of parentheses one  must use. One way to describe 
the usual existence theorem of Cauchy-Lipschitz is to say 
that there  exists  a one-dimensional subset of R“, M = { x : x  = 
(exp t f ) x o ;  It1 < e }  such  that f [ x ]  is tangent t o  M at  each 
point. (A glance at  the  appendix  at this point is recommended 
for  those  who  want a  definition of a  manifold,  vector fields 
on manifolds, etc.)  Stated in this way, the Cauchy-Lipschitz 
theorem answers a  special case of the following  more general 
question. Consider 

m 
i ( t )=x u i ( t ) f i [ x ( t ) l ,   x ( O ) = x o  ER“. (3)  

i- 1 

Under what circumstances can we find a smooth p-dimensional 
subset M of R“ such  that  the f i ( x )  span the  tangent space of 
M at each point? Why is this question of any  interest? Well 
if the ui’s are controls which can be turned on and off, re- 
versed, etc.,  at will, and if such an M exists, then  apparently x 
will be able to move anywhere  in M but  not  out of M .  

At the first level of complexity,  the existence of M hinges 
on  the following  observation. If  we follow the integral curve 
of i = f l ( x )  for t units of time,  then i = f 2 ( x )  f o r t  units,  then 
i = -fl ( x )  for t units  and for t units of time and i = -f2 [ x ]  for 
t units of time  then  the resulting point is (exp - t f 2 )  (exp 
-tfl ) (exp t f 2 )  (exp t f l ) x o  (see Fig. 1). Working out  the value 
of this product based on repeated use of the second-order 
expansion 

yields 

a f 2  a f l  
[ f 2 ,  f l  1 = Zfl - Z f 2  

Fig. 1 .  Motivating the  definition of ubiquitous bracket of Lie. 

is the  secalled Lie  bracket (also  sometimes called the  Jacobi 
bracket, also sometimes defined with  the  opposite sign) of the 
vector fields f1 and f 2 .  This  calculation,  which  “everyone 
should do  once in his life” is most significant. Everything 
else depends on it. If [fl , f2 ] is not a  linear combination of 
f l  , f 2 ,  * - , f m  then [fl , f2 ] represents  a “new” direction  in 
which the solution can move  and the original problem of 
finding  a  manifold such  that f 1 ,   f 2 ,  * * - , f ,  span the tangen 
space will not be solvable. 

We introduce a  definition  which is useful  when we want to 
rule  out this  behavior.  One calls a set of vector fields { fl  , 
f 2 ,  * * , f m }  involuative if there exists yip such  that 

k=l 

Some  thought  about  the above construction  should persuade 
the reader that  the  property of being involuative is necessary 
in  order to be able to “integrate” the set of vector fields 
( f i  , f 2 ,  - , f m )  t o  get a “solution” manifold. More than 
60 years ago, Frobenius established his theorem  on  “complete 
integrability”  which  showed that,  under some mild regularity 
assumptions, this condition is sufficient as well. Frobenius 
[ 2 ]  stated his result as a local result (and actually  a “dual” 
to  the  form we discuss here)  but  subsequently it has beep 
established  in  a  global form which asserts the existence of 
maximal (with respect t o  theoretic inclusion) solutions. 

Just as there  are  many versions of the existence theorem  for 
ordinary differential equations, there are many versions of 
the  Frobenius theorem. We give two examples which play  a 
role in the  control  literature. 

Theorem 1: (Versions of the  Frobenius  theorem.) Let 
{ f ( x l ) ,   f ( x 2 ) ,  * * , f ( x , ) }  be an involuative collection of 
vector fields which are 

a)  analytic  on an analytic manifold M .  Then given any 
point x .  E M  there exists  a  maximal submanifold N con- 
taining x .  such  that { f i ( x ) }  spans the  tangent space of 
N at each point of N .  

b) C” on a C” manifold M with  the dimension of the spai 
of { f i ( x ) }  being constant  on M .  Then given any  point 
x .  E M  there exists  a  maximal  submanifold N containing 
x .  such  that { f i ( x ) }  spans the  tangent space of N at 
each point of N .  

Example 1: Consider the vector field on R defined by  the 
function x .  R is an  analytic manifold and  this vector  field is 
analytic.  According to a)  for each point in R, there is a  maxi- 
mal submanifold of R such  that x spans  the  tangent space of 
this  submanifold at  each  point.  In this case, we see that  there 
are  three  distinct  submanifolds of. R which arise in this way. 
If x .  is positive, then N is  the positive half-line (0, m); if x0 is 
negative, N is the negative half-line (-00, 0); and if x0 = 0, it 
is the  zero dimensional  manifold  consisting of 0 alone. 

Example 2: We give a  second  example with a little  more 
geometric content. Consider three  analytic vector fields in 
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t x3 

Fig. 2. Maximal integral manifold for the  example. 

R 3  represented by 

This  collection is involuative since [f l  , f2 ] = f 3 ,  [ f 2 ,  f3 ] = 
fl and [ f 3 ,  f l  ] = f 2 ,  and a t  each  point  in R3 - { 0) it contains 
exactly two linearly independent vectors (x l f l  + x2f2 + 
x 3 f 3  = 0). If we look at  any  nonzero  point in R 3 ,  say  x = 5 (a, a, a), then we can integrate this distribution 
through  that  point.  For  the given point, we get the  set 

N =  { x :  llxll = 1) 

as the  solution of this  integral  manifold  problem. Why this 
set? If  we integrate along one of the vector fields, say f l ,  

the integral curve is a  circle;  x1 is constant, x f   + x $  is con- 
stant (see Fig. 2). Now given any  point on the circle, we can 
integrate along .-i = f f 3  to get a  band around this circle, etc. 
In fact, this is how one sometimes proves the  Frobenius theo- 
rem: riding successive vector fields to fill out a  neighborhood 
of a given point. Notice that,  in this case, the vectors f l , f z ,  
3 ,  are, in  fact,  tangent  to  the spherical  shell N at each point 

as required. 
The relevance of the Lie bracket and  Frobenius' theorem 

for  controllability  studies comes  in via a theorem of Chow 
[ 3 ]  and  its  refinement by others [4 ] - [8 ] .  Given a wntrol 
system  in R" 

m 

i=l 
i ( t )  = ui(t)fi  [x(t)I, ~ ( 0 )  =x0 

we can certainly  reach  any  point of the form 

x = (exp t l f a ,  ) (exp f2f% (exp t 3 f a ,  (exp tmfam)xo 

simply by  letting all but  one of the  inputs  be zero with  the r e  
maining one being one. In particular, given two vector fields 
f l  and fz we can reach 

x = (exp -tf1) (exp - V i  (exp tft 1 (exp tf2 1x0 

This suggests that  we can move in  the  direction [ f l  , fi ] even 
though  this direction may  not be in  the linear span of the 
{ f i } .  To push this idea to  its logical conclusion, we need the 
following definition. 

If { f i }  is a  collection of C" or  analytic vector  fields on a 
manifold M ,  then we say  that {fi} is a Lie  algebra of vector 
fields provided that 

i) { f i }  is a  real  vector  space with respect to ordinary vec- 

ii) if fi and fk belong to {fi}, then  the Lie bracket [ fi, f i ]  
tor  addition  and scalar multiplication, 

belongs to {fi}. 

We say that  the Lie algebra is finite  dimensional if the real 
vector space {fi} is finite  dimensional. For example, the col- 
lection of all polynomials form an infinite-dimensional Lie 
algebra of vector fields on R' since [ xp, x4 ] = ( p  - q ) x P + r l  . 
On R", the set of all vector fields of the  form  Ax  with A  a 
constant  matrix  forms an n'dimensional Lie algebra since 
[Ax,  Bx] = ( A B  - BA)x-thus giving closure  under Lie 
bracket-and since the space of n by n matrices is an n'- 
dimension  vector  space. 

One can see the reason for  introducing  the Lie algebra in 
controllability problems. The previous calculation  strongly 
suggests that  not  only is (exp t f l  )xo  and  (exp  tf2)x0  in  the 
reachable set from x0 but also (exp t [ f l ,  f 2 ] ) x 0 .  In fact, 
iterating on this  theme suggests that { exp rf}xo is in the 
reachable set if f can be expressed as a  bracketed  combina- 
tion  of  the given f i .  Let { f i } ~ ~  denote  the Lie algebra of 
vector fields generated by {fi}-that is, take all  linear  combi- 
nations of elements of {fi}, take Lie brackets,  take all linear 
combinations, take Lie brackets,  etc. t o  arrive at  the smallest 
Lie algebra of vector  fields  which contains {fi} and call this 

Suppose  that  the vector  fields  in { f i } ~ ~  are complete, 
Le., that  (exp  rf)x is defined for all -m< t < 00. (If the 
manifold is R", this means no finite  escape times  in forwards 
or backwards  time.) In this case, there is a group of mappings 
of M into itself which is closely connected with { f i } ~ ~  and 
which is obtained by  "exponentiating" { f i } ~ ~ .  We explain 
this as follows. The  set of all C" one  to  one  and  onto map- 
pings of a C"-manifold onto itself, having the  property 
that  the inverse mappings are also C", is called the  group of 
diffeomorphisms of M and is written diff (M). The set of 
such  maps  is clearly closed under inversion and composition, 
justifying the label group. Given f, for each t (exp r f )  defines 
a  map of M into itself which is just  the mapping produced by 
the flow on M defined by  the  differential  equation i =f(x). 
We denote  the smallest subgroup of diff (M) which  contains 
exp tf for all f in {fi} by { exp {fi} } G .  It is clear that  any 
point x in M of  the  form x = {exp  (fi}}~x, can be reached 
from x0 along solution curves of (3) because in  this case 

{ fi }LA . 

x = (exp t1fa, 1 (exp t2 fa , )  * * . (exp tmfa,  1x0 

and piecewise constant  controls suffice to carry out  the 
transfer. 

A question of major wncern can now be  asked. What 
is  the difference  between {exp { f i } } ~ x ~  and  {exp 
{ f i } ~ ~  }GXO?  The  former is reachable and  the  latter has the 
appearance of something larger. The  theorem of Chow  says 
that these  sets  are,  in fact,  equal  under  rather weak 
assumptions. 

Theorem 2 (Versions of Chow's  Theorem): Let { f l ( x ) ,  
fz(x), - - , f,(x)} be a  collection of vector fields such that 
the collection {fl (x), f2 ( x ) ,  - , f, (X)}LA is 

a)  analytic on an analytic manifold M .  Then given any 
point x. E M ,  there exists  a  maximal  submanifold 
N C M containing x0 such that { exp { x i ) } ~ x ~  = 

b) C" on a Cw manifold M with dim  (span { f i ( x ) } ~ ~ )  
constant on M .  Then given any  point x. E M ,  there 
exists  a  maximal  submanifold N C  M containing  x0 
such  that { exp {xi}}~xo = { exp }cx0 = N .  

Clearly this result  goes  a  very  long  way toward answering 
the  controllability  question  for  the  system  in (3). Most often 

{ ~ X P  {XiILA 1 ~ x 0  = N .  
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in applications, however, we are  interested  in  systems which 
have a drift  term, Le., systems of the  form 

i ( t )  = f [ x ( t ) l   + u ( t ) g [ x ( t ) l ,   4 0 )   = x o .  (4) 

As a  result about  controllability of this class of systems, the 
main  limitation on Chow’s theorem is that it does  not dis- 
tinguish  between positive and negative time. That is, the 
submanifold  whose existence is guaranteed by  Theorem 2 may 
include points which can only be  reached  by passing back- 
wards  along the vector field f ( x ) .  This means that while the 
reachable set  from x .  will always  be  contained  in the mani- 
fold  defined by Chow’s theorem,  in general, it will be a proper 
subset of this manifold. The most  affirmative statement  is 
the following result proved at various levels of generality by 
Krener [ 7 ] ,  Lobry [ 6 ] ,  and Sussmann and  Jurdjevic [8]. 

Theorem 3: Suppose f and g are vector fields on a manifold 
M and  suppose  that {f, g }  meets either of the  conditions  for 
Chow’s theorem.  Then  the reachable set for (4) contains  an 
open subset of the manifold N = { exp {f, g}La } ~ x ~ .  

A slick proof of this  theorem is given by  Krener  (see also 
Lobry’s survey in [ l ] ) .  This theorem underscores the rela- 
tively meager state of our knowledge regarding the reachable 
set of points  for  systems  with a drift  term. 

Example: Consider the problem in R2 : 

if u ( t )  and u ( t )  are  arbitrary,  then  an  application of  Chow’s 
theorem shows that  any  point  in RZ - {0} can be steered to 
any  point  in RZ - (0). On  the  other hand, if u ( t )  is con- 
strained to  be one, giving us a drift  term,  then  the reachable 
set is  difficult to describe precisely. We can say that if x1 (0) > 
0 and x z ( 0 )  > 0, then x l ( f ) ,   x z ( t )  will lie in the positive quad- 
rant  for  all f > 0 so that  the Teachable set is  not all of R 2  - 

In order  to  be  able to  present  some interesting examples, 
we state a rather special  circumstance  under  which the  drift 
term causes no  difficulty. 

Theorem 4: Suppose  that f and g are  vector  fields on a 
manifold M. Suppose that { f , g }  meet either of the con- 
ditions of Chow’s theorem  and  suppose  that  for  each initial 
condition x .  the  solution of 

Io}. 

i ( t )  = f [ x ( t ) l  

is periodic with a least period T ( x o )  <M. Then the reachable 
set from x .  for (4) is { exp {f, g}LA  }GxO. 

Proof (Sketch): The idea is that if we are at x. and we 
want to pass backwards  along the vector field f ( x ) ,  we simply 
let u be zero and allow the  free periodic motion to bring x0 
nearly  back to x .  along the integral curve of i = f ( x ) .  If the 
least period of the periodic solution  through x0 is T, then, 
by following = f ( x )  for T - E units of time, we have the 
same effect as following i = - f ( x )  for E units of time.  Thus 
we can, given enough  time,  reach  any  point  which is reachable 
for 

x ( t )  = u ( t ) f [ x ( t ) l  + u ( t ) g [ x ( t ) l .  

We now consider some applications to illustrate  the ideas 
and to contrast  the  theory  with  the well-known linear con- 
trollability  theory. Our first example can be viewed as  a Lie 
theoretic  explanation of parametric amplification  and para- 
metric instability. 

N 
Fig. 3. Controllability  approach to parametric amplification. 

We consider a  particular model  for a child pumping  a swing. 
The  question being that of determining if controllability 
theory can predict the existence of pumping  modes which 
will maintain or increase  a given amplitude of oscillation  (see 
Fig. 3). The  model consists of a mass which moves up  and 
down along  a weightless rod  (the child changes its  center of 
mass). We ignore, to cut down  the length of the  formulae,  the 
mass ?f swing itself. The  state space fo the  problem is M 
{ ( 8 , 8 , 2 ) : 0 < 8 8 2 2 n ,  O E R ,  O < I < I o } .  Setting  the time 
rate of change of the angular momentum  about  the  support 
equal to the  torque  due to gravity gives 

d - [ e ’ ( t ) P ( t ) m ]  + l ( t ) m  sin e ( t )  = 0. 
d t  

Differentiating gives the system 

e ( t )  + [ 2 i ( t ) / z ( t ) 1 e ’ ( t )  + [ 1 / z ( t ) 1  sine(t)  = 0. 

Now letting e’ = $ and regarding i = u as the  control, we get 
a  set of three  equations 

Notice that  with u e 0, the  solution is periodic so we may a p  
ply Theorem 3 in  computing  the reachable set (provided we 
stay away from a  neighborhood of 8 = n where the period of 
the free motion is not  bounded). Let the right side be f +  ug. 
Then  the Lie brackets include 

where a = ( I 2  - Z3 )/Il, 0 = ( 1 3  - ZI YZ2, and 7 = (11 - I2 1/13 
with Zi being the  moment of inertia about  the  ith principal 
axis. Let these  equations of motion  be  denoted  by 

where the wi are the angular velocities and Zini are the a p  
plied torques-both referred to principal  axes. Now sup 
pose there  is  only  one  torque available, say,  from a pair of 
gas jets,  but that the  torque vector is not necessarily aligned 
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with a  principal  axis. That  is, we have 

n = u( t )g  

for some constant vector g. Again, the  motion  with u = 0 is 
periodic  (elliptic function  theory!)  thus mitigating the  effect 
of the drift term. 

If we linearize this system about w1 = wz = w3 = 0, then 
linear theory will predict  a one dimensional  reachable set, 
provided g is  nonzero. We will see that  the Lie theory,  on  the 
other  hand, answers the problem  precisely. We begin by com- 
puting  some of the vector  fields belonging to  the Lie algebra 
of vector fields generated by f and g. Let a ,  b ,  and c denote 
the  components of g. We have, for  example, 

a(bw3 + cw2 1 
[ f , g l  = Kaw3 + c u l l  [ [ f , g I ,g l  = 2  &c [ y(aw2 + bwl I] [I:] 

and, selecting  a third  constant vector field from {f, g } u ,  

[ [ f , g l ,   [ [ f , g l , g l l  = 2  

To check controllability, we want to determine if we have, 
as yet, vector fields which  span R 3 .  In particular, we ask if 
g, [f, g1 and [ [f, gl , gl span.  A  calculation shows that 

=/?ya4(0cZ - y b 2 )  + ~ ~ y b ~ ( 7 a ~  - a c 2 )  +4?c4(ab2 - p a 2 ) .  

We now analyze  the case of the  symmetric rigid body.  In 
this case, we can assume 7 = 0 and since  physics demands  that 
a + p + y = 0, we see  that  the  determinant is simply ka3c4 * 
(b2 + a Z ) .  If this vanishes, then  one of three things  happens- 
either a is  zero, c is zero, or a and b are both zero. The first 
possibility implies that p is  zero,  thus f"  0 and  the reachable 
set is one dimensional. The second  implies, since y = 0, that 
w 3  is a constant regardless of u and  the reachable set is not 
three dimensional. The  third implies that w: + wz is a  con- 
stant regardless of u ,  thus  the reachable set is not  three dimen- 
sional. All cases are incompatible with controllability. If 
none of these occur,  then  the system is controllable and 

ius this is a complete analysis of the  symmetric case. 
If y is  nonzero,  then  the analysis is apparently more tedious, 

and  it is not clear that  the particular Lie brackets displayed 
here tell  the  whole  story. Of course, if they  do  not,  then we 
must look  at  additional elements of {f, g}LA. 

We conclude  this section  with a discussion of one  further 
type of result on  controllability which has been investigated 
by Hirschorn [ 9 ] .  The idea  is, that under some circumstances, 
it  should be possible to "factor out"  the effect of the  drift 
term  for 

i ( t )  = f [ x ( t ) l  + u ( t ) g [ x ( t ) l ,  x ( t )  = x0 (5) 

so as to  be  able  to express the reachable  set at  time t as 

R ( t )  = {exp L}G (exp t f h  

where L is some Lie algebra of vector  fields constituted  from 

f and g but  not necessarily {f, g}LA. A particularly simple 
special case of this kind of result is expressed by  the following. 

Theorem 5: Let L = {f, g}LA and let LO be the smallest 
subalgebra of L which contains g and is closed under Lie 
bracketing with f. Suppose that  for all h in LO we  have 
[ h ,  g] = ahg for some constant a. Then 

R ( t )  = { exp L O  }G exp tfxo . 
Proof: See [9, p. 945, Corollary 11 and make the neces- 

Example [ 10, p. 2771 : Consider the linear time invariant 
sary modifications to cover the present setup. 

system 

i ( t ) = A x ( t ) + b u ( t ) ;   x ( 0 ) E R " .  

A  quick  calculation  shows that  the vector  fields of Theorem 5 
are 

L =  { b , A b , - , A " - ' b , A x }  

Lo = { b , A b ; . . , A " - ' b }  

and  that 

[Lo,bI= (0). 

Thus  the reachable  set at  time t is 

R ( t ) = e x p  { b , ~ b ; . . , ~ " - ' b } e ~ ' x ~ .  

Since ( b ,  A b ,  * , A"-'b)  represent constant vector fields, 
their  exponentials correspond to  translation.  Thus  this expres- 
sion for R ( t )  is equivalent to 

~ ( t ) =  { x : C t x o  +q, rlEspan(b,Ab,...,A"-'b)} 

which is a well-known result. 

111. I N P U T ~ U T P U T  DESCRIFTIONS 
One of the  central ideas of system theory is the relationship 

between  empirical "external" descriptions of systems  and the 
various detailed  "internal"  models one can propose to  account 
for  the observed phenomena.  In  the case  of linear  systems 
this circle of ideas is expressed in terms of the relationship 
between  the integral equation description 

y ( t ) = L '  w(t,  u ) u ( u ) d u + t ( t )  ( 6 )  

and  the linear differential  equation description 

i ( t )  = A ( t ) x ( t )  + B ( t ) u ( t ) ,  y ( t )  = c ( t ) x ( t ) .  

In  the present context,  the  internal descriptions will be by 
means of nonlinear  differential equations. What substitute 
can be found  for (6) as an external description? We can re- 
gard (6) as the  fust  two  terms in  a  power series expansion for 
y .  The general series is the Volterra series: 

v ( t )  = w o ( t )  + 
OD 1' lul . . . ~ ' ' w j ( t , u l , u z , . . . , u j )  

i = l  

.u(u')u(u~)...u(u~)du~du~ " ' d U j .  

This  series,  as it turns  out,  is just the right alternative for  the 
integral equation (6) whendealing  with linear analytic systems. 
This  is  due  in part to  the following theorem  from [ 1 1 1 .  

Theorem 6: Suppose that f(*, *):R' X R" +R" and g(*, .): 
R' X R" +R" are continuous  with respect to their first argu- 
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ment  and  analytic  with respect to  their  second. Given any 
interval [0, T]  such  that  the  solution of 

i ( t )  =f[ t ,  x ( t ) ] ,  x0 = 0 

exists  on [0, T I ,  there exists an E > 0 and  a  Volterra series 
for 

i ( t ) = f [ t , x ( t ) l  +u( t )g [ t , x ( t ) l ,  x ( O ) = x o ,  

Y ( t )   = h  [ x ( t ) l  (7) 
with  the Volterra series converging  uniformly on [O, TI to  
the solution of (7 )  provided lu(t)l  < E .  Moreover, the Vol- 
terra series is unique. 

We give some  indication  of  how the proof  goes. For bi- 
linear systems 

i ( t )  = A ( t ) x ( f )  + u ( t ) B ( t ) x ( t ) ,  ~ ( 0 )  = x O ,  Y ( t )  = C X ( ~ )  

we can introduce z ( t )  via x ( t )  = @ ~ ( t ,  O)z( t ) .  Then z ( t )  
satisfies 

; ( f )  = U ( t ) @ i ’ ( f ,  O)B( t )@A(t ,  O ) Z ( f )  = U ( f ) G ( f ) Z ( f ) .  
def  

Using the Peano-Baker formula, we  have 

z ( t ) =  [ I+[‘g(o l )dol  +IT‘’ g ( o l ) B ” ( o z ) u ( o l ) u ( 0 2 )  
0 0  

* dozdol + * * . ] x o .  

Then c x ( t )  is  characterized by  the Volterra  kernels 

w k ( t ,  o1,o2 * * ’ (Tk) = &A ( t ,  0 1  )B(ol ) @ ( D l ,  uZ)B(oZ) ’ * 
@A (ok-1, ok)xO. 

(see  d’Alessandro et  aZ. [ 121).  For  time invariant  bilinear 
systems, we  have 

w,(t l  o1 * 0,) = c&fe-AulB&u~  e-A%B& “3 - * - 
e-A ‘nB&‘nxo. 

An algorithm  for  constructing the Volterra series in  the 
general case is given in [ l l  I .  It  amounts to expanding all 
functions  in  their  Taylor series, forming  a  sequence  bilinear 
approximations of  increasing  accuracy,  and  computing the 
Volterra series for  the bilinear  approximations.  The  idea 
behind the derivation  can  be  deduced from  the following 
example. 

Consider 

i ( t ) = - x ( t ) + x Z ( t ) + u ( t )  [ I   + x Z ( t ) l ,  y ( t ) = x ( t ) .  

Now if we look  at x 2 ( t ) ,  it satisfies a  certain  differential  equa- 
tion  which  is linear in u(t) .  More  generally, x p  satisfies a dif- 
ferential  equation  which is also  linear in u. We have 

- 1   2 + u  

=[: -: 
\ \  

0 

4 + 2 u  \ 
- 3  

\ 

if J lu(o)l do is small. Then we can expand this about 
Jlu(o) do = 0 and  get an expansion  of [x, * - * , x p ]  which is 
of order xP+’. Thus we can expand x t o  any  order  by  this 
“Carleman  linearization” [ 1 3 ] .  The  approximate  equations 

are all of the  form ip = A p x p  + uBpxp + ubp,  and the Vol- 
terra series for  these  bilinear  systems  can  be  computed  using 
the Peano-Baker series. 

As an  example of Volterra series computation, we compute 
the frequency  modulation  Volterra series. The  model is 

X ( f )  + (a2 + u ( t ) ) x ( t )  = 0 ,  x ( 0 )  = 0, i ( 0 )  = 1, 

Y 0 )  = x ( t ) .  
Writing this as a first-order system gives 

and 

Y ( t )  = a-’ sin at a+ sin a(t  - u)  sin aou(o) do l’ 
+ Jo” [’ a-3 sin a(t - u) sin n(a - p )  

sin apu(p)u(o)  dpdo + * 

with  the  nth kernel  being 

w ,  = a-” sin a(t - U l )  sin a(o1 - uz) 

- - sin a(onml - a,) sin ao,. 

As stated,  the  existence  theorem  for  Volterra series is only  a 
locally valid result.  Global  representation  of  a  nonlinear sys- 
tem  by means of an  everywhere  convergent  Volterra series is 
not  expected  except  for special cases. These  special  cases art 
the analogs  of the entire  functions of  complex  function 
theory-Le., functions of a  complex  variable  which  have the 
whole  complex  plane as a  domain  of  holomorphy.  d’Alessan- 
dro et  aZ. [12] have pointed out  that, for  bilinear  systems, 
the Volterra series does  converge for all locally bounded u. 
This is, perhaps, the first  large class of nonlinear  systems 
for  which  global  convergence of the Volterra series has  been 
established. 

An  obvious  necessary  condition  for  global  convergence of 
the Volterra series is  that  there should be  no  finite escape 
times  for the given initial  condition  of the system,  regardless 
of the choice of u.  Equivalently,  one  should ask that  there be 
no  finite  escape  time  from  any  point  reachable  from XQ 

As was  pointed out before,  a  vector field on  a manifold 
said to  be  complete if the solution  through  any  initial  point 
can  be extended  forwards  and  backwards  in  time to  give a 
solution on (-m, CO). Thus  one may  reasonably  restrict the dis- 
cussion to  complete  vector fields. Even s o ,  this is a  problem 
of some  subtlety  in  that  it can happen  that f and g are corn 
plete,  and  yet  for 

i ( t )  = f [ x ( t ) l  + u ( t ) g [ x ( t ) l ,   x ( 0 )  = x0 

there is a  bounded  function of time u( * )  such  that  there  exists 
finite  escape  time  because [f, g ]  is not  complete.  Thus  in  at- 
tempting to  “globalize”  Theorem 1, it is natural to  ask that 
not  only f and g be  eomplete  but that every  vector field in 
{f, g}LA be  complete.  (In  this  connection it is appropriate 
t o  mention that if a  finite  number of complete  vector  fields 
generate  a  fiiitedimensional Lie algebra, then every  vector 
field in  the algebra is complete.) 
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Suppose that {f, g}LA is a  collection of complete  analytic 
vector  fields on a  manifold M and suppose that every point  on 
M can be  reached from every other  point on M (this assump- 
tion will be weakened later). If 

* u((71) u((J2)  * * * u(ok)  dol do2 . ' ' dok 

is the Volterra series for  the linear-analytic system 

i ( t )  = f [ ~ ( t ) l  + u ( t > g [ x ( t ) l ,  y ( t )  = h [ x ( t ) l ,  ~ ( 0 )  = x 0  

and if for some u ( * )  defined on [ 0, TI the Volterra series 
diverges, then we can still determine y ( t )  from a  knowledge 
-4 u ( * )  and the kernels wk as follows. 

From Theorem 6, given any  bounded u ( * ) ,  there exists e, 
depending only  on  the  bound  on u ,  such  that  the Volterra 
series converges on [0, e l .  Moreover, given any u ( ' )  on [0, TI 
there exists  a trajectory  on M generated by u. At  each point 
on  this  trajectory,  there  is a Volterra series corresponding to 
the given differential equation  and  output  map,  but  with 
altered initial state. At  each point along the  trajectory,  there 
is an E such  that  the Volterra series based on  that  starting  state 
converges on [0, e ]  for u ( t )  <M. It is not difficult to show 
(using the  proof of [ 1 1,  Theorem 1 ] ) that  the  infimum of all 
these E'S is positive, say eo. Now we sum  the  Volterra series 
by  splitting up  the interval [0, TI into subintervals of length 
eo or less. Because of causality,  i.e., because y ( t )  does not 
depend on u(7)  for 7 > t ,  we can rearrange the  Volterra series 
at time neo as 

* w;( t ,  ol, * * * , ok)  u(ol + neo) u(o2 + neo)  
* * ~ ( a k  + neoj  dol do2 - dok 

where the altered Volterra kernels  are obtained by integrating 
out  the  effect of u on  the interval [0, neo 1. At the same time, 
they are the kernels described by Theorem 6 with  starting  state 
x(ne0) .  Thus the  Vnlterra kemsls at one  point  determine the 
Volterra kemeh  at  all points which are reachable from  that 
point.  It  is  not too difficult to see that if x is either reachable 
from x. or a point  from which x 0  can be reached,  then  the 
k l t e r r a  series at x0 determines  the Volterra series at x .  
gxtending  this  argument, we see that  the  Volterra series 
at x. determines  the Volterra series at each point  in 

We say that a  Volterra  series is e-summable if, for every 
bounded u( .), there exists an e > 0 such  that by  splitting the 
time  axis up  into intervals of length E or less and  integrating 
out  the kernels successively on [ 0, E ] ,  [e, 2 ~ 1  * , we can 
make the series convergent. 

Theorem 7: Given a  linear analytic system (7) with {f, g}LA 
a  collection of complete vector  fields, the Volterra series for 
starting  state x. determines  the  Volterra series at  any  state  in 
{exp {f, g}LA }cxo, and  for  any  bounded u,  the Volterra 
series is esummable  to y (  *). 

An important aspect of this  work is that  the  properties of 
the Lie algebra { f ,  g}LA mirror themselves in  the  properties of 
the  Volterra series. We give an example of this which hinges 
CL the following definition. A Lie algebra is solvable if the 

{exp { f ,  g)LA }GXO * 

series of algebras J? def i ed  by = [e, L ]  , = [ek, J?]  is 
the trivial algebra for some k .  Checking for solvability involves 
computing derivatives and  linear algebra. Solutions of dif- 
ferential  equations are not  required. 

We say that a  Volterra series is finitely  generated if there 
exists  a  finite number of separable  kernels w 1 ,  w2, * . , w y  and 
an analytic  function q5 such  that y ( t )  = @ ( y l ( t ) ,   y 2 ( t ) ,  - * * , 
Yr( t ) )  with 

y i ( t )  = I,' * * luni wi( t ,  0 1 ,  . . , ani) 

* u(o1) . * - u(o,,) do,, * * d o l .  

Naturally any Volterra series which is itself finite is finitely 
generated,  but  the converse is clearly false as exp Ji u(o)  do 
demonstrates. 

Theorem 8: Given (7), if the Lie algebra is solvable, then  the 
Volterra series is finitely  generated. Conversely, given any 
finitely generated  Volterra series, there exists a  realization of 
it  with {f, g}LA solvable. 

Proof (Sketch):  The second statement comes from [ 11, 
Theorem 61 with minor changes. The fmt part is an immediate 
consequence of an analysis of Chen [ 14, Section 41 ; we sketch 
how his argument goes. Let { f , ( x ) } i = l  be  a basis for  the Lie 
algebra generated  by f and g. (This Lie algebra is finite 
dimensional since it is generated  by  a f i i t e  number of 
elements  and is solvable.) We look  for a solution of 

i ( t )  = f [ x ( t ) l  + g [ x ( t ) l  , x(0) = x 0  

which is of the  form 

x ( t )  = (exp ml ( t )  f~ ) (exp m2 0 )  f 2 )  * * (exp m A t )  f r )  x o  . 
Using the  BakerCampbell-Hausdorff  formula, i.e., the vector 

field analog of the  matrix  identity 

e F ~ e - F = ~ + [ ~ , ~ ~  + $ [ F , B I I  + * * a  

to  expand  exp ( m i ( t )  f )  exp ( m i ( t ) g )  exp ( - m , ( t ) f ) ,  we see 
that  for small time,  solutions of this form  exist. Moreover, we 
can  find the mi as integrals of u( - )  and  exponential  functions 
of integrals of u.  (This part uses the solvability assumption! 
One can even order  the basis so that  this  representation is valid 
for all time if the vector  fields are  complete.) 

IV. THE STATE-SPACE ISOMORPHISM THEOREM 
There are two very important  facts  about modeling finite- 

dimensional linear 1 / 0  systems. The first  asserts that any two 
models of the same 1/0 map are related by  a change of basis, 
provided we assume that  the systems  are controllable and 
observable-thus  making sure  that  the system has  no  internal 
parts which are irrelevant to  the  external  description.  The 
second  asserts that  any  external description  which can be real- 
ized by  a fiiite dimensional  linear  system can be realized 
by one which is controllable and observable. In  other 
settings, one of these  results can be  true  without  the 
other.  For  example, in the  group  theoretical  setup of [ 1 5 1 ,  
the  appropriate analog of the first is true  but  not  the  second. 
In the Hilbert space setup of [ 161, the second is true  but  not 
the  first. In the present context, Sussmann [ 171 has  shown 
that if a  realization exists, a  minimal  realizations  exists  and 
that  any  two minimal  realizations of a given 1 / 0  map are 
related by a smooth change of coordinates. In this section, 
we consider  a special case of his theorems  and some  related 
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results. For a well motivated discussion of these elegant 
results, see Sussman's contribution to [ 1 ] . 

Suppose that 

X(r) = a [ x ( t ) l  + u ( t )   b [ x ( t ) l ,   A t )  = c [ x ( t ) l ,   x ( 0 )  = x o  

and 

are  two linear-analytic  realizations of the  same 1/0 map. We 
would like to show  that,  under reasonable assumptions,  there 
exist an analytic map @ such  that x = @ ( z )  and z = q5-l ( x ) .  If 
such a @ exists, then it follows that X = ( a @ ) / ( a z )  i and  thus 
that 

We say that a linearanalytic realization is bilaterally  con- 
trollable on a  manifold M if, given any two  points X I ,  x2 on M, 
there exists r E { exp {f, g}LA }G such  that m1 = x?.  This is 
the same  as asking that  there  be a  sequence of points x' , x z ,  
* - - , x" with x 1   = x 1  and x 2  = x" and x' reachable from x 1  
and x 3 ,   x 4  reachable from x 3  and x 5 ,  - - . That is,  bilateral 
controllability means one can get from  any  point  on M to any 
other  point  on M moving forward and backward  in  time. We 
say that a  linear analytic realization on a  manifold M'is 
observable if, given any two distinct starting  states x l ,  x2 in M, 
there exists an  input u ( * )  whose choice may depend  on x1 and 
x2 , such  that  the  output  from x 1  differs from  the  output  from 
x 2 .  Realizations  which have these properties will be called 
minimal. Notice that  the idea of dimension  plays no role in 
this definition  although  one would hope  that all minimal 
realizations of the same 1/0 map would be realized on 
manifolds of the same dimension, and this turns  out  to be the 
case. 

Theorem 9 (Special  case of Sussmann /I 71): Suppose we 
are given two linear analytic systems 

i ( t )  = f  [x ( t ) l  + u ( t ) g [ x ( t ) l ,  Y ( t )  = h I x ( t ) l ,   x 0  = x ( 0 )  

and 

i ( t )  '= a[z ( t ) l  + u ( t )  b [ z ( t ) l ,  y ( t )  = c [ z ( r ) ~ ,   z o  = Z ( O )  

which are minimal  realizations on manifolds M and N ,  respec- 
tively, of the same 1/0 map.  Suppose that all the vector  fields 
in { f , g } L A  and {a ,  b)LA are  complete.  Then  there exists  a 
diffeomorphism @ : M + N such  that 

b [@-I ( x ) ]  = g ( x )  ax 
c[@-'(x)l = h(x) .  

Proof (Sketch): Since the realizations  are  minimal, there 
exists a map $:M + N which sends x0 into zo and  which  sends 
any  point x in M wbich,is reachable from x0 to  the  point z in 
N reached by the application of the  same  control sequence to  
the z system.  Controllability  insures that this map is onto N ;  

ip 

Fig. 4. Illustrating the  proof of  isomorphism  theorem. 

it is one  to  one by  observability. (All points are reachable by 
going forward  and backward  in time, so 6 is defined on all of 
M and is onto N ,  no  two  starting  states give identical 1/0 maps.) 
Clearly then,  $is a one to one  and  onto  map. We have only to 
establish its  smoothness properties. We want to show that 6 is, 
in fact,  analytic. Notice,  however, that  it must happen  that  for 
each { t l , t2 ; . - , tn} ,wehave  

ij[(exp tlf) (exp t2g)  (exp t 3 f )  * * )  x01 
=(exptla)(expr2b)(expta)(~")x~l. 

If y e  pick coordinates in M and coordinates in N ,  we can lo01 
at @ as a  map ,of R" + R". The  setup is diagramed in Fig. 4 .  
The  analyticity follows from  the  analyticity of the  exp map 
and its inverse. 

The  other  (more  difficult)  part of this circle of ideas is 
related to  the existence of minimal  realizations and is expressed 
by the following theorem. 

Theorem IO: Given any 1 / 0  map  which is realizable by an 
initialized  linear-analytic  system on a  manifold M with 
{ f , g } L A  being complete,  there exists a  realization of the 
same 1/0 map on a  manifold N such  that  the system is 
bilaterally  controllable on N ,  and  any two distinct states can 
be distinguished from  the  output  for some input. 

The proof of this  theorem required  a  sharpening of the 
conditions of Theorem 2. In  order to show that  {exo 
{f, g}LA }G is always  a  differentiable  manifold [ 181 , [ 191 am 
also a  generalization of the closed subgroup  theorem of dif- 
ferential geometry [ 201. Both these  generalizations require 
new mathematical  technique  and yield new basic mathematics 
in return. 

It is of interest to contrast Theorems 9 and 10 with  the 
corresponding  results for bilinear  systems. Bilinear systems  in 
R" 

i ( t )  = A x ( t )  + u ( t )   B x ( t ) ,   y ( r )  = (c, x ( t ) ) ,   x ( 0 )   = x o  

have a  reachable  set  which is a proper subset of R". One  says 
that  they are minimal [ 121 , [ 21 ] if there is no subspace of 
R" which contains  the reachable  set for all time  and if any 
two  distinct  starting  states, x 1  and x2, yield different 1/0 
maps. The analog of Theorem 9 is that  any bilinear system 
can be  reduced to one which is minimal, and the analog of 
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Theorem 10 is that  any  two minimal bilinear systems  are 
isomorphic  in the following very strong, sense. If, A ,  B ,  c, and 
x. and F ,   G ,  h ,  and zo are  the  data which  specify the systems, 
then there exists an invertible matrix P such  that PAP-’ = F ,  
PBP-’ = G ,  cP’c = h ,  and Pxo = zo .  Thus in the case of bilinear 
systems, the  structure  one assumes to begin with  is  rather rigid, 
but  the conclusion is also very precise (linear  isomorphism). 
With linear-analytic  systems the  structure  is less rigid and  the 
conclusion is less precise. 

We note  in passing that  the results we have given, together 
with  a  result of [ 121, allow us to give an answer to a question 
which has received some attention in the  literature.  That is, 
given a  linear analytic systems,  when  does there exist  a change 
of coordinates which puts it in bilinear form?  The answer is 
the following. Compute  the Volterra series for  the  stationary 
linear  analytic  system; if there exists  a square  matrix T ( t )  with 
a rational Laplace transform,  and vectors c and x o ,  such  that 
the  kth kernel is 

w k ( t ,  01  , 0 2 ,  * * * 9 0k) 

= c‘T(t  - ul) T ( U ~  - u2). * - T ( U ~ - ~  - uk) x. 

then  the Volterra series is bilinearly  realizable  (cf. [ 121). If 
no  such T, c, x0 exists, then  the system is not bilinearizable. 

The work of Fleiss [ 221 is devoted to the derivation of some 
of the  results  on bilinear  systems mentioned here using the 
Kleene-Schutzenberger representation  theorem and the  theory 
of formal power series. 

The  paper of Porter  [23]  contains  further  material develop- 
ing Volterra series  ideas  in  a different way. 

V. STOCHASTIC EQUATIONS 

One of the  most convincing  applications of the  controll- 
ability concept  for linear  systems occurs in the  study of linear 
stochastic  equations of the  Ito  type 

d x ( t )  = A ( t )  x ( t )  dt + b( t )   dw( t ) .  

The  density which  results from a  particular initial density can 
be expressed in  terms of the density which results from x(0) = 
0. Thisis 

where W is a controllability  Grammian, 

w ( r ) = ~ f ~ ~ ( f . ( I ) b ( D ) b f ( 0 ) ~ ~ ( t , O ) d .  

and W is invertible, as required for  the expression for p to be 
meaningful,  when the system has  the  controllability  property. 
Thus  controllability is exactly  the right concept  for deciding 
if smooth densities exist. Moreover, if A and b are constant 
and if the eigenvalues of A have negative real parts,  then,  under 
the  controllability  hypothesis,  there  is a unique invariant 
measure which is C” (Gaussian actually)  such  that a l l  measures 
approach it as t goes to  infinity. 

In  fact,  there is one more connection  between  control- 
lability  and  the  probability  density which is even more striking. 
It is well known and easily seen [ 241 that  the minimum value 
of 

over the  set of al l  u’s which steer  the  deterministic system 

i ( t )  = A ( t )  x ( t )  + b ( t )   u ( t )  

from x = 0 at t = 0 t o  x = x 1  at t = tl  is 

~ * ( ~ ~ , t ~ ) = x ~ ~ - ~ ( t ~ ) x ~ .  

Comparing this  with  the  formula  for  the  density, we see that 
if  we start  at x = 0 at t = 0, then  the value of the probability 
density  at  any  point is inversely proportional to the ex- 
ponential of the “energy” required to get  there. In this 
section,  we.describe  the  extent to which  these  results  carry 
over to linear analytic systems. 

Because of the  properties of the  Ito calculus, stochastic 
equations  on manifolds take a somewhat peculiar form.  The 
basic well-posedness condition  for  the class of systems of 
interest here is expressed by the following theorem. 

Theorem 11: Let f ,  g : R ”  + R” be analytic. Suppose that 
M = { x : x  E R ” ,  & ( x )  = 0, i = 1, 2, * . , p )  is an  analytic 
variety  in R ” .  Given the  Ito  equation 

dx = f ( x )  dt  + g ( x )  d w ,  x ( 0 )  E M  (8) 

we can assert that x ( t )  belongs to M with probability  one, if 
for all  x 

C ( x ) & ( x ) = O ,  i = 1 , 2 ; * . , p  

( ~ ( x )  - 3 c Z ( x ) )  ~ ~ ( x )  = 0, i = 1;2, - * , p 

where F and G are given by 

Proof: (see [25]  and  [26] .) 

[ 281. Consider the  Ito  equation 
As application of this  result we look  at  an example from 

d x = A x d t + B x d w ,  x ( 0 ) = x o ,   I I x o l l =  1. 
Under what circumstances can we ,assert that Ilx(t)ll = 1 with 
probability one?  In this case 4 = x  x - 1 and G @ ( x )  = 0 if and 
only if B is skew symmetric. Likewise, ( F  - (1/2) G 2 )   $ ( x )  = 
0 if A - (1/2) B2 is skew symmetric. Thus for example, 

defines  a process which stays on  the circle {x: + x f  = constant} 
almost surely in  the mean-square sense. The  apparent  tendency 
of the  drift  term  to pull the process inside the circle is  offset 
by the  Ito  correction  term. 

Given a stochastic differential equation,  the  question arises 
as to  whether  or  not  smooth  transition densities  exist as they 
do in the linear controllable case. If they exist, then we denote 
by p(t ,  x,  y )  the  probability density at  time t and  point x given 
that  at t = 0 the  state was y .  

The Fokker-Planck equation  for  the  transition densities 
associated  with the  Ito  equation (8) is easily expressed  in terms 
of the above notation.  It is 

($ + F ( x )  - 3 G z ( x )  1 p ( t , x ,  y )  = 0. 

This equation  has  the  formal appearance of a heat  equation 
except  that  the second-order part, represented by  the G 2  
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term, is not positive definite, so the classical existence theory 
does not  apply.  Fortunately,  Hormander  [27] has worked out 
a theory of such  equations which  exactly fits  the present case. 
Hormander calls an  operator 

L = ( F + G ~ )  

hypoelliptic if, for  any given Schwartz distributions 4 and 
J ,  such  that L$(x)  = $ ( x ) ,  it follows that $J is C" off  the 
support of the singular part of J ,  after a  suitable  modification 
of @ on a  zero  measure. A necessary and sufficient condition 
for  hypoellipticity is that { f ,  g}LA should  span .the  tangent 
space of the manifold at each point. The a/& term in the 
Fokker-Planck equation must  be combined  with L to give an 
operator which is hypoelliptic on M X [ 0, 00) where [ 0,w) is 
the time axis. Since a/a t  spans the time direction, we have 
hypoellipticity if the smallest Lie algebra, which contains g 
and is closed under bracketing with f ,  spans the  tangent space 
of M at each point of the manifold. These ideas were put 
together by Elliott [ 261, [ 271 to get the following results. 

Theorem 11: Suppose that { f ,  g}LA consists of complete 
vector  fields on a  manifold M .  Suppose that  the smallest Lie 
algebra, which contains g and which is closed under bracketing 
with f ,  spans the tangent space of M at  each point.  Then  the 
corresponding Ito  equation 

def ies  C" transition densities on M .  
Notice that,  in stating  this theorem, we have taken  the 

opposite  point of view from Theorem 10  in  that here f and g 
define  vector  fields on  the manifold and  the "correction 
term"  (b/2) (ag/ax)  g is what is needed to insure that  the give0 
Ito  equation evolves on the manifold. In Theorem 9, g and f - 
(1 /2) (ag/ax)  g were the  vector fields on the manifold. 

Specific instances of processes meeting  these conditions have 
been discussed in  the  literature.  For  example, in [ 281 the case 
of processes on spheres is studied  in some  detail. 

Theorem 11 then asserts that some essential features of the 
linear stochastic differential equation can be  transferred to 
manifolds. Only the last fact cited  at the beginning of the 
section regarding the  proportionality of the density to the 
exponential of the  control energy  has failed to be generalized. 
In special cases (essentially Abelian Lie groups), some progress 
has  been made  on finding  a  suitable extension of this result, 
but a general theory seems to require new developments. 

There is agrowing  literature  on  the  formulation  and  solution 
of filtering and  stochastic  control problems on manifolds  (see, 
for  example, [ 301 ). 

APPENDIX 
The  purpose of this appendix is to give the basic definition 

from  the subject of differentiable  manifolds in a form which 
is most compatable with the main body of this  paper. We do 
so both to provide  a  convenient  reference for  the reader  and 
also because there are many slight but  potentially  annoying 
differences  in the general literature. 

By a C" differentiable  manifold, we understand a triple 
(X, r ,  a) whereby X is a set, r is topology  on X, and is a  set 
of continuous maps from  open subsets of X into  R"  with  its 
usual topology. Both r and CP are subject to certain restrictions 
which we now describe. We ask that  the topological  space 
(X, r )  be a Hausdorff  space, i.e., the  open  sets have the 

property  that  for  any  two distinct points x1 and x2 in X, there 
are elements of r ,  N(x l  ) and N ( x 2 )  such that N(x ) fl N(x2 ) is 
empty with x 1 E N(x l  ) and x2 E N ( x 2 ) .  We ask that (X, r )  be 
separable, that is, that  there exist  a countable subset of X 
which is dense in (X, 7). As a  consequence of this, there is a 
countable subset of r which  generates all of r under  union; 
that is (X, r )  is second  countable. So much  for  the  topology. 
Now we consider the collection of maps @ = {@ilt$i : Mi + N i }  . 
We assume that  there exists an integer n ,  a  collection of open 
sets Ni,  and  continuous  one to one maps $i : Ni +Mi  C R" 
where Mi are open subsets of R" such that @T1 :Mi + Ni are 
also continuous. This  collection CP is assumed to have the 
following additional properties. 

(i) The domains of the @i form an open covering of X. 
(ii) Each 4i maps its  domain  bicontinuously  onto  an  open 

subset of R", 
(iii) If Ni n Ni is not  empty  and if 4i : Ni n Ni + Pii and 

4j : Ni n Ni + Qii, then @j 0 4zT1 is an infinitely  differ- 
entiable  map of Pii into Qij. 

(iv) This  collection @ is maximal with respect to properties 
(ii) and (iii). 

The locally defined  maps & are called charts and @ is called, 
rather  appropriately,  an atlas. The last condition (iv) is not 
too  important in that if we have some charts  that we want to 
use, then we just declare Q, to be the collection of all charts 
which are compatible  with  the given ones. If in the previous 
paragraph we replace  "infinitely  differentiable" by "analytic", 
then we obtain an analytic  manifold. (Incidentally, because we 
assume that  the manifolds  are  second countable,  they are auto- 
matically paracompact, a condition which is sometimes assumed 
in place of second  countable.) 

In  addition  to R" itself, a standard source of manifolds  are 
the so-called differential  (analytic)  varieties, in R" described 
by the following theorem. 

Theorem A: Let @1@2, * * * , @,,, be C" (analytic)  functions 
on R" suppose that 

R a n k [ ( V 4 1 , V 4 z , " ' , V 4 n I = m  

at each point  on  the  set M = { x  : & ( x )  = 0). Then this Set with 
the  topology r consisting of all sets of the  form 0 n M 0 open 
in R n  can be given the  structure of a c" (analytic)  differ- 
entiable manifold. 

Proof: Cee Singer and  Thorpe [ 3  1, p. 1201 .) 
A submanifold of a C"-manifold M is a  pair ( N ,  4) where N 

is a C"-manifold and I#J is a one  to  one mapping q5 : N + M sucb 
that (d$ ) / (dx )  has  a trivial kernel at each point of N .  In some 
cases, one defines an n-dimensional  differentiable  manifold 
M as a connected subset of the standard pdimensional Car- 
tesian space subject  to  the  requirement  that,  at each point 
x of R" which belongs to M ,  it is possible to establish  a  (gen- 
erally curvilinear) coordinate system for  RP with basis elements 
y , ,   y 2 ,  * * , y p  (RP-valued  C"-functions on Rp)  such  that in  a 
neighborhood N of x ,  the  intersection of M and N is exactly 
the set of points which satisfy 

Yn+1 = o  
Yn+2 = 0 

y p  = 0. 
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Fig. 5 .  illustrating  submanifold  of R 3. 

Fig. 6. Tangent space of M at m .  

The remaining coordinate  functions y 1 ,  y 2 ,  . * , Y n  then serve 
to  define  points in M unambiguously. Thus a  differentiable 
manifold is a point  set  and a set of coordinate  charts. This 
definition is fully consistent with the more abstract definition 
given above and, in fact, defines the differentiable structure 
alluded to in  Theorem A (see Fig. 5). 

Example: We may realize the n-dimensional sphere shell,  as 
a  submanifold of Rn+’ as  follows.  Let 4 1  of Theorem A be 
x ~ + x ~ * * * x ~ + l - 1 .  T h e n a t e a c h p o i n t o f M = { x : 4 ( x ) =  
0) the  rank of V@ is one. Thus M can be given a  manifold 
structure. Since V@ has a trivial kernel, this  makes (M, 4) a 
submanifold of R “ + l .  

According to  the Whitney imbedding  theorem  [32] , any 
@anifold is diffeomorphic to one which is imbedded  in a 

Euclidean space. 
We now  set up the  definition of a vector field on a  manifold. 

Let M be a  manifold and let Fo(M) be the  set of all C” 
(analytic)  functions  on M, F’(M) = { f l  F : M -P R, f~ 6” or 
analytic}. A tangent vector at m E M  is an operator 
u : F o ( M )  + R such  that  for all f, g ,  E Fo(M) 

(i) o ( f +  g )  = ~ ( f )  + vk) 
(ii) 4 f g )  = ~ ( f )  * d m )  + v(g) f h ) .  

This definition  does  not  look very  geometrical, but observe 
first of all that  the space of all tangent vectors at m is a real 
vector  space, and  second, if x 1 ,  x ? ,  * , x, defines  a  local 
coordinate system in the manifold, then  for each i, u ( f )  = 
a f ) / ( a x i ) J m  defines  a  tangent  vector. In  fact,  one can see on 
the basis of a Taylor series argument that these vectors  form a 
basis for  the set of all tangent vectors at m ,  i.e., the tangent 
space at m .  Thisvector space is denoted by Tm(M) (see Fig. 6 ) .  
By a vector field on manifold, we understand a map which 
assigns to each point of m an element of Tm(M) 

If the ai are C” (analytic),  then  this is called a C” (analytic) 
vector field. 

In R ” ,  we may then associate  with every function f : R” -+ 

R” a  vector field on R” 

YE (M, 4) is a  submanifold of Rn such  that FJI vanishes for all 

functions JI which are constant on M ,  then  in any local co- 
ordinate system of the  type described in  Theorem A we have 

f i -  =0, i =  1,2 ; . . ,p .  

Thus we can restrict F to T(M) and get  a  vector field on M. 
The symbols a/ (axi )  can be thought of as unit vectors to be 
compared  with  the symbols i, j ,  k, etc. in classical vector 
analysis. This notation associates with  each vector field a 
partial  differential operator whose domain is the differentiable 
functions  on M. It is particularly  useful, for example, in 
discussing the Fokker-Planck equation. 

By the Whitney imbedding theorem,  any manifold is dif- 
feomorphic to a  submanifold of R ” .  In R” , there are admissi- 
ble coordinate systems  which are global-e.g., the  standard 
coordinate system for R n ,  It  also serves to identify  points  in 
any submanifold M C R” and  thus we may describe vector 
fields on M in terms of this single global coordinate system. 

When we speak of a  differentiable  dynamical  system being 
on a manifold,  what we mean is that  at each point x0 of M, 
we can  pick  local coordinates  and express the evolution  in  a 
patch  about x .  by 

a 
axi 

i ( t )  = a [ x ( t ) ]  + u ( t )   b [ x ( t ) ] .  

However, it may happen  that M is a subset of R m ,  and we look 
only at  the  redundant  coordinates 

= f [ z ( t ) l  + u( t )   g [ z ( t ) l  

in R” space. It is in this second way that  one is most likely to 
encounter a  practical  problem. 
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linear Passive Networks:  Functional  Theory 

Abstmct-Lineaa passive  time-varirble  networks  are  investigated P i -  [6, Sec. 3.51 and  sometimes in the time  domain [ 71.  Many of 
the use Of distniutionai kernels as applied to the the results based upon  distribution  theory to  date are sum- 

scattering  matrix treated in the time  domain. Necessary and sufficient conditions for are obtained,md the matrix is shown marized in the  books of Doleial [8]  and, more recently, 
to be a  measure s~tisfying an energy form  constraint. Lossless con- ikmanian [91. 
stnints pertinent to synthesis are deveioped  while  networks consisting For time-invariant networks,  there  are also available more  or 
of a finite number of circuit eknents are considezed in some less classical-type works [lo]-[ 151 based upon  frequency do- 
Examples illustrating interesting  behavior  are  presented. main  concepts.  These concepts have been taken over to the 

I. INTRODUCTION 
HE MATHEMATICAL FIELD of functional analysis is 
now recognized as  a rich one with  a varied, though 
modem,  history [ 11. Within functional analysis, the 

theory of distributions  [2]-[4] plays  a  particularly interesting 
role, especially for physical  systems. Indeed,  motivation  for 
the  theory came,  in part,  from  the circuit theory aspects of 
Heaviside’s work [ 51 while more  recent applications have led 
to the development of the  properties of passive networks  in a 
distributional  framework, sometimes in the  frequency  domain 
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time  domain  characterizations, primarily through  the  state 
[ 161, such that extensions to time-variable synthesis based 
upon  the  state [ 171, [ 181 become  straightforward, albeit with 
strange  results (as instabilities of passive structures [ 19 I). 
Likewise, there  are recent applicable  developments  in operato!. 
theory [ 201, especially with regard to resolution space con- 
cepts  [21]-[ 241 as well as some  distributional  treatments of 
time-variable networks  [25]-[28]. However, when  one  turns 
toward synthesis of time-variable networks,  the  functional 
analysis results are scarce [29]-[33].  Thus  it seems that a 
functional analysis treatment of linear passive time-variable 
networks with an emphasis upon results important  for  synthe- 
sis is in order. 

In this paper, some of the  most  important  properties of 
linear passive networks are  developed  in terms of the time- 
varying scattering  matrix  [34] ~ ( t ,  7 ) ;  this  distributional kernel 
s appears to be  one of the  most generally useful descriptions 
available, especially for synthesis. The paper is structured  such 
that Sections IV and V contain  the general results. Section I1 
essentially serves as a review section where the  underlying con- 
cepts of interest are de f i ed ;  among  these are a network an4 


