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LIE THEORY AND CONTROL SYSTEMS DEFINED ON SPHERES*

R. W. BROCKETTt

Abstract. We show in this paper that in constructing a theory for the most elementary class of
control problems defined on spheres, some results from Lie theory play a natural role. In particular
to understand controllability, optimal control, and certain properties of stochastic equations, Lie
theoretic ideas are needed. The framework considered here is probably the most natural departure
from the usual linear system/vector space problems which have dominated the control systems literature.
For this reason our results are compared with those previously available for the finite-dimensional
vector space case.

1. Introduction. Specific results about control systems whose state spaces are
spheres have been useful in understanding problems in energy conversion, con-
trolled rigid body dynamics, etc. Some examples are mentioned in our earlier
paper [1]. Here we work out in more detail, and in greater generality, the theory
for a class of problems of this type and compare our results with the case where
the state space is a vector space. To carry out this program requires some results
from Lie theory, Lie groups acting on spheres, etc. There has been no attempt here
to discuss the most general setting in which techniques which we use are applicable.
Instead we have taken the sphere problems as a model and have studied a range
of control-theoretic questions in that setting. A number of possible generaliza-
tions will be apparent.
To begin with, we mention some well-known facts about linear system theory.

We do this to make the paper a little more accessible to those not familiar with
control problems and to sensitize the reader to certain issues important in control.
For a more complete account and references to the literature one can consult
for the deterministic results and 3] for the stochastic results.

Linear system theory deals with the pair of equations

(1.1) (t) Ax(t) + Bu(t), y(t)- Cx(t),

where 2 denotes a time derivative. It is assumed that x(t)e R", u(t) Em and
y(t) EP. For simplicity we take A, B, C to be constant matrices. One calls u the
control, x the state and y the output. The theory of linear system is extensive but
for our present purposes we point out only the following five results.

(i) The pair of equations (1.1) is said to be controllable if for every x0 and x
in " and every tl > 0 there exists a piecewise continuous control u(. such that
if x(0) Xo then x(t) xl. A necessary and sufficient condition for controllability
is that Rank (B, AB, ..., A"- B) n where, indicates a column partition.
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214 R.W. BROCKETT

(ii) The pair of equations (1.1) is said to be observable if for every xl 4: x2

and every > 0 the outputs corresponding to x and x2 differ on the interval
[0, l]. A necessary and sufficient condition for observability is that rank
(C; CA; CA"- 1) n where indicates a row partition.

(iii) If the pair (1.1) is controllable, then for every given x0 and x in " and
every tl > 0 there exists a piecewise continuous control u defined on [0, tl]
which transfers the state from Xo at 0 to X at and minimizes

(1.2) r/(t) u’(t)u(t) dt

relative to all other piecewise continuous controls which accomplish the same
transfer.

(iv) If there exists a linear feedback control law u Fx such that 5c (A + BF)x
has a null solution which is asymptotically stable, then there exists a control
law u Kx such that limt_ x(t) 0 and the functional

rl u’(t)u(t) + y’(t)y(t) dt

is minimized by setting u(t) Kx(t).
(v) If (1.1) is controllable and if the differential equation 2 Ax is asymp-

totically stable, then the associated stochastic equation (for notation, see-[3])

dx(t) Ax(t) dt + B dw(t)

has a unique invariant Gaussian measure which has zero mean and variance Q
satisfying

(1.4) QA + A’Q BB’.

In this paper we establish analogues for each of these results for systems of the
type

i=1

where A, B 1, B2, B are skew symmetric matrices and the system can be
thought of as evolving on the sphere
One significant point in the linear theory is that the matrix B is generally not

invertible and cases for which it is invertible are so infrequent as to be virtually
without interest. If B is invertible, then by an appropriate choice of basis equation
(1.1) becomes

(1.6) 5c(t) Ax(t)+ u(t)

and controllability is automatic. Moreover, in this case problems (iii) and (iv)
are easily reduced to variational problems of the classical type

(1.7) r/ L(x, 5c) dt
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CONTROL SYSTEMS DEFINED ON SPHERES 215

with L quadratic in x and +/- and L** positive definite. Control theory works with
the more general "degenerate" case where L** is only nonnegative definite but
certain constraints are in effect. If the above integral is thought of as the action
integral in a mechanics problem, then the case treated in control theory allows
for the possibility of certain zero masses provided there are appropriate linear
constraints between position and velocity. It can also be thought of as a limiting
case of an unconstrained dynamical problem where certain masses and associated
energies go to infinity. This second interpretation is generally more useful. Remarks
of the same type apply to equation (1.3) where existence of a smooth transition
density is well known if B is invertible whereas the same is true, but for rather
more subtle reasons, if we assume controllability instead of invertibility of B.

2. Controllability. One ofthe main areas of applicability of Lie theory in control
has been that of determining the set of poinfs reachable along solution curves of
2(t) f(x(t), u(t), t) for the set of all piecewise continuous controls u(.). For
studies of this kind see [4]-[101. If the control equations are of the form

(2.1) 2(t) A + ui(t)B x(t), x(t) [n,
i=1

then the system typically evolves on a manifold in [". The determination of the
set of points reachable from a given point Xo can be accomplished by the deter-
mination of the set of matrices reachable from the identity for the matrix equation

(. 2( + 2 u(t x(, x(01 ,
i=1

and then letting this set act on Xo via ordinary matrix-vector multiplication.
Equation (2.2) can be thought of as defining a control problem on a matrix Lie
group. The question of determining what matrices are reachable from the identity
along solutions of (2.2) has been the subject of a number of papers [1, [7-[10.
Following Jurdjevic and Sussmann, we term systems of the form of (2.2) righ
invariant. This is appropriate because the vector fields defined on the Gl(n) by
the right side of(2.2) are invariant under the translation defined by right multiplica-
tion with an element of Gl(n). We shall say that (2.2) is controllable on a group

if any two points in can be joined by a solution curve generated by some
piecewise continuous control u(. ).

Suppose that A and B1, B2, B, are all skew symmetric. Then regardless
of the choice of u the solutions of (2.1) remain on the sphere defined by Ix()l

Ix(0) We shall say that the system (2.1) is controllable on the sphere if any
two points on the sphere be joined by a solution curve generated by some piece-
wise continuous curve u(.). Phrased another way, the system is controllable if
the set of matrices reachable from the identity along solutions of (2.2) act trans-
itively on S -. From earlier results 10 we know that since the motion is confined
to a subgroup of SO(n) the set of matrices reachable from I is the matrix Lie group
consisting of all the matrices which can be expressed as products of the form
expH,expH, ..., exp H, where H, Ha ..., H belong to the Lie algebra
generated by A, B,B,..., B.D
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216 R.W. BROCKETT

Now of course the orthogonal group SO(n) acts transitively on S"-x so that if
the algebra generated by A, B, B2,... ,Bm is the full set of skew symmetric
matrices, then the system (2.1) is controllable on S"-. However, there are certain
subgroups of SO(n) which act transitively on S"- as well. The real compact
forms of the classical Lie groups are all candidates. The results are well known
[11] but we repeat them here. For example, it is clear that both the full unitary
group and the special unitary group of dimension n act transitively on the set of
complex n-vectors whose Hermitian length is one. But this set is just a set of
vectors with components (xi + x//- l yi) such that

(2.3) (x/2 + y/Z)= 1,
i=1

which is a (2n 1)-dimensional sphere. Thus by defining the realification [12 of
the unitary algebras by the Lie algebra homomorphism

(2.4) B---,[ ReB ImB]-Im B ReB

we obtain a set of real matrices whose associated group acts transitively on S2n- 1.
The real compact form of C, is the intersection of a special unitary group and the
symplectic groups. Naturally this representation is in terms of matrices of even
dimension so that they can act on even dimensional complex vectors only. Thus,
by analogy with the unitary case, the real compact form of C, acts on the sphere
of dimension S4"- 1. This action is known to be transitive and of course we can
add to the algebra real multiples of x//- 1I to get the "full quaterion-unitary
group" which acts transitively as well. These four cases, each valid for all integer
n, together with three particular ones account for all possibilities. The particular
cases may be explained as follows. The exceptional algebra G2 admits a 7-dimen-
sional skew-symmetric representation whose exponential acts transitively on S6.
The spin representation of SO(7) is 8-dimensional and it acts transitively on S7.
The spin representation of SO(9) is 16-dimensional and it acts transitively on S 5.
With this explanation we can state the following result.
THEOREM 1. Let A, B1, "’", Bm be a collection of n x n skew symmetric matrices.

The control system

(2.5) 2(t) A A- E ui(t)Bi
i=1

x(t)

is controllable on S"-1 if the algebra generated by A, B1, B2, B is:
(i) SO(n) for n 0 mod 2;

(ii) SO(n) or the realification of S U(n/2) or U(n) for n mod (2);
(iii) the realification of Sp(n/2) for n 1 mod (4);
(iv) G2 if n 6, Spin (8) if n 7 or Spin (16)/f n 15.

Moreover, if the Lie algebra is not one of these cases the system (2.8) is not con-
trollable.D
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CONTROL SYSTEMS DEFINED ON SPHERES 217

If the system is not controllable on S"- it is sometimes of interest to compute
exactly what points can be reached from a given initial state. The determination
of what points belong to this set is facilitated by a knowledge of the structure of
the representation defined by the matrices in the algebra generated by A, B1,
B2,..., Bm. If this representation is not irreducible, then its reduction is clearly
the first step in the determination of the reachable set. The properties of the
irreducible pieces may reveal the form of the reachable set in a straightforward
way. For example, if the evolution equation can be decomposed as

(. = (R)+-(R)+ 2u((R)+(R)l x(l,
i=1

then the Kronecker product of the reachable group for

(2.7) 2(0 A + ui(t)B] X(t)
i=1

and the reachable group for

(2.8) 2(t) A2 + l Ui(t)B2 X(t)
i=

contains the reachable group for (2.2). The reachable group will not, in general,
simply be the Kronecker product of the reachable groups unless the effects of
the u’s are decoupled.

For the linear evolution equation (1.1) it happens that if it is possible to transfer
any state to any other state then this transfer can be done in arbitrarily small
time. This is not the case for systems defined by (2.1). Jurdjevic and Sussmann [10
give an example ofa system defined on S2 which is controllable but certain transfers
cannot be made in less than 1 unit of time. Thus if (1.1) is controllable on S" the
strongest statement we can make on the basis of the present analysis is that for

sufficiently large every state can be transferred to every other state in units
of time. Estimates on this time have not yet been worked out.

In the vector space case controllability is closely related to the concept of
observability as mentioned in the Introduction. In the present setting this is not
the case at all. We say that the system

(2.9) 5c(t) A -F Z ui(t)Bi x(t), y(t)-- Cx(t)
i=1

is observable on S"- if no two distinct initial states on S"-1 give rise to the same
response y for all controls u(.). The following theorem gives a necessary and
sufficient condition for observability.
THFOREM 2. Let A, B1, B2, Bm be a collection of skew symmetric matrices

and let c be a unit vector. The control system

5c(t) A + ui(t)B x(t), y(t) cx(t)
i=1D
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218 R.W. BROCKETT

is observable on S"- if and only if the set of matrices {A, BI, B2, Bin, ’} is
irreducible.
For a proof of this theorem and more general results of this type, see 13].

3. Optimal control. Consider again the evolution equation (2.2) defined on
matrix group (. Let there be given a time > 0 and boundary conditions of
the form X(0)= Xo; X(t)= X. Suppose that in addition there is given a
functional which is of the action type

u(t) atq
oi=

as opposed to the geodesic type

(3.2) g2 1 u(t)
i=1

1/2

dt.

Our problem is to determine if there exists a control u(. such that the boundary
conditions are met and the given functional is minimized and, if such a control
exists, to characterize it. Just as with controllability, there is an obvious connec-
tion between problems defined on a group and problems defined on a manifold
on which that group acts. This would no longer be the case if r/depended on x
in a general way.
We shall use the formalism of the maximum principle of Pontryagin [14]

rather than the calculus of variations to attack this problem because it handles
the degeneracy which is built into the problem in a natural way. Applied to the
present problem, Pontryagin’s maximum principle asserts that if u(.) is an
optimizing control then there exists a matrix P such that

(3.3) P(t) A’P(t) ui(t)B’iP(t
i=1

and H, defined by

(3.4) H(P, X, u) (P, AX) + u,(P, B,X) + u2i=1 i=1

is minimized with respect to u by the optimal control. Thus we have the optimal
control given by

ui(t ( P(t), B,X(t)).

This choice of u gives a pair of differential equations with split boundary condi-
tions

__d IX(t)] [ O] IX(t)] [/, 0,] IX{t)l(3.6)
dt L P(t)_] A’ L P(t)_] i- <P’ B,X)

Bi L P(t)_]D
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CONTROL SYSTEMS DEFINED ON SPHERES 219

The problem can be reduced to a single quadratic equation with split boundary
conditions by introducing K XP’. An easy calculation shows that

(3.7) /(t) AK(t)- K(t)A’- (B’,, K(t))(B,K(t)- K(t)B’,).
i=1

So far everything is valid for an arbitrary subgroup of Gl(n). If A, B1, B2, B
are self-contragredient, then a simplification occurs. In that case any solution of
the differential equation for P can be expressed in terms of a solution of the
differential equation for X with nonsingular boundary conditions; that is, P(t)

NX(t)M for some constant matrices M and N. Specializing to the skew sym-
metric case gives the following result.
THEOREM 4. Suppose that A, B1, B2, Bm are skew symmetric n x n matrices

and suppose that there exists a piecewise continuous control u(. which transfers
the state of the matrix system

(3.8) "(t) A --t-
/=1

ui(t)Bi) x(t)
from Xo at 0 to X at > O. Then there exist constant matrices M and N
such that the solution of

(3.9) J(t) A + ’, <Bi, X(t)MX’(t)N)B X(t), X(O) X
i=1

passes through X1 al l. Moreover, there exists one such pair M, N which
minimizes rll relative to any other continuous u(. which steers the system to X
Jkom Xo in the same period of time.

Proof. That there exists an optimal control follows from Theorem 6 of Cesari
[15. The rest follows from the maximum principle as discussed above.

There is an alternative point of view available for these problems which makes
a little closer contact with both physics and Lie theory but which is not so useful
here. Consider the right-invariant control equation in SO(n) with control f:

(3.0) 2() n(t)x(t), x(o) Xo.
Let the problem be to pick f in the space of skew symmetric matrices such that
X(tl) X1 and the trace form

(3.11.) r/= tr (I- f)2 dt

is minimized. Elementary variational arguments with due regard for the ad-
missibility of variations lead to the Euler equation

(3.12) fIfI- I- 1I.

In SO(3) this matrix equation is equivalent to the familiar Euler equations for a
rigid body

Ild91 (I2 13)O92093,

(3.13) I22 (13 11)601603,

I33 (11 12)601092,D
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220 R.W. BROCKWTT

which, after all, come from minimizing the action integral on SO(3). (Note that
the kinetic energy of a rigid body can be expressed by the trace form
(det I)tr (I-lf)2, where I is the usual inertia tensor (see [2, p. 64]). Incidentally,
this also serves to define the degree of difficulty of actually solving the control
problem mentioned above. Since it is well known that the solution of the Euler
equations generally involves elliptic functions, the solution of the optimal control
problems cannot be expressed in terms of elementary functions except in special
cases.
By far the simplest special case on SO(n) occurs when r/1 is the negative of the

integral of the Killing form. That is, given X(0) and X(1) and given the evolution
equation

n(n )/2

(3.1.4) 2(t) u,(t)BiX(t), X SO(n),
i=1

where B -B’ and for all and j

(3.15) <B,Bj> tr BiB’ 6ij,

one finds that the optimal trajectory is

(3.16) X(t) entX(O),

where is the solution of en= X(1)X-(0) which has the smallest Frobenius
norm.
We turn now to applying the above results to the problem of optimizing

trajectories on spheres. Note that trajectories on spheres can be optimized for
fixed endpoints by solving an associated right invariant group problem and then
picking the minimizing element in the group for transferring Xo to x l. The follow-
ing theorem expresses this.
THEOREM 5. Let A, B ,B2,... B be skew symmetric matrices. Suppose that

the system

(3.17) 2(t) (A + i=l’Ui(t)Bi) X(t)

is controllable on S". Then given a sufficiently large time > 0 and given points

Xo and X in S"- 1, there exists a control which transfers the system from Xo at 0
to x at and minimizes

(3.18) r/= u’(t)u(t) dt.

Moreover, there exists a matrix Ko such that the optimal control is given by ui(t)
(K(t), Bi), where K is defined by the matrix differential equation

(3.19) /(t) [A, K(t)] + <K(t), B)[K(t), Bi], K(O) Ko.
i=1

We complete this section on optimal control with a result of the type which
plays a major role in linear system theory in connection with the regulator problem.D
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CONTROL SYSTEMS DEFINED ON SPHERES 221

THEOREM 6. Let A and B be n x n skew symmetric matrices and consider the
system

(3.20) c(t) Ax(t) + u(t)Bx(t).

Let a be a unit vector in the null space of A such that A and Baa’B’ are a pair of
matrices which act irreducibly on the orthogonal complement of the one-dimensional
subspace defined by a. Then the control law u(t) a’Bx(t) steers the system from
any initial state Xo 4 -a to a and minimizes the integral

U2(t) + Ia’Bx(t)] 2 dt

relative to any other continuous control u(. ).
Proof. We can write r/as

q u2(t)- 2a’(t) + [a’Bx(t)] 2 dt+ 2a’x(t)

since Aa 0 we have

for (u(t) a’Bx(t))2 dt + 2a’x(t)
o

Thus if the control law u(t)= a’Bx(t) actually drives the state x to a then it is
optimal. However, observing that a’x(t) has a derivative along the given solution
which is equal to -[a’Bx(t)] 2, we see by LaSalle’s theorem (see, for example, [2])
that the solution x a can fail to be stable ifand only if a’B eatx vanishes identically
for some x -# _+ a. By looking at the derivatives at 0 we see that this can
happen if and only if (Ba, ABa,..., A"-1Ba) fails to span the orthogonal com-
plement of the one-dimensional subspace defined by a.

4. Stochastic differential equations. We consider now a third aspect of control
theory on spheres. This has to do with the analogue of property (v) mentioned
in the Introduction. What we show is that controllability implies the existence
of a unique invariant measure for a stochastic equation on S"-1. We use It6
notation for stochastic differential equations. Wong 3] can be consulted for an
explanation of both the mathematics and the notation.

Let wl, w2, "., w,, denote independent Wiener (Brownian motion) processes
of unitary variance. In giving a precise meaning to differential equations in which
something like "white noise" appears, K. It6 16] invented what has proven to be
a very successful calculus in which the standard differentiation rule is significantly
modified insofar as differentials of Wiener processes are concerned. In this calculus
dwi dwj 6gjdt, a first order term; dw dr, and (dr)2 are both higher than first
order. We discuss the implication of this in one important special case. If x and y
are vectors satisfying the It6 differential equations

(4.1) dx(t) Ax(t) dt + Bx(t) dw(t),

(4.2) dy(t) Fy(t)dt + Gy(t)dw(t),D
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222 R.w. BROCI,:ETT

then z(t) x(t)y’(t) satisfies the It6 equation

(4.3) dz(t) (Az(t) + z(t)F’ + Bz(t)G’) dt + (Bz(t) + z(t)G’) dw.

The only other fact we need about It6 equations concerns the associated mean
equation. If x and y satisfy equations (4.1) and (4.2), then if(t)= ox(t) and (t)

oy(t) satisfy the ordinary differential equation

d
(4.4) d-2(t) AYe(t),

d
(4.5) dtf(t)
We shall see that these two results permit the derivation of equations for all
moments and imply that the moment equations are decoupled from each other.

Recall that the number of linearly independent degree p forms in n variables
is given by

(4.6) N(n, p)
n+p-1

P

We can therefore associate with each n tuple (xl ,x2,’", Xn) a N(n, p)-tuple
xtP= (x,,,x-lx2, "’, x,) where the coefficients are chosen in such a way
as to validate the equality

(4.7) xtp 2.__
X 2p.

It is clear that if x satisfies an ordinary differential equation which is linear, say,

d
(4.8) d=X(t)= Ax(t),

then xtpl also satisfies a linear differential equation

d
(4.9) d- xtP(t) AtPx(t)"

We regard this as a definition of AIv]. It is related to the classical idea of an induced
representation. Of course if there are controls present a similar set of equations
follows;that is, (2.1)implies

(4.10)
d

xtpl(t AtP]xtPl(t + ui(t)BlplxtP](t)"
dt i=

Similar remarks hold for stochastic equations of the type under consideration
here, provided suitable allowance is made for the It6 calculus. Associated with
the It6 equation

(4.11) dx(t) Ax(t) dt + Bx(t) dw
i=1D
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CONTROL SYSTEMS DEFINED ON SPHERES 223

is the family of equations

(4.12) dxtP(t)= A- --B; 2

i=1

[P]

F,+
i=1

X[P](t) dtnt- Z BIp]X[p](t) dwi"
i=1

The derivation of this is a straightforward exercise using the properties of dw
outlined above. Finally, we have the moment equations associated with (4.11)"

(4.13) jttP(t) A 2 12B
i=1

Iv]
1__//[p]]2 [p]
2,,i

i=

where [P](t) x[P](t). (Compare with [17.)
In terms of the It6 calculus when can the matrix stochastic equation

(4.14) dX(t) AX(t) dt +. dwi(t)BiX(t)
i=1

be thought of as evolving the orthogonal group? This will be the case when the
associated vector equation (4.11) evolves on the sphere defined by Ix(t) x(0)[
for all x(0). Using the facts outlined above we see that d(x’x) 0 if and only if
for all

(4.15) B --B A- 2 2’, B A 2B
i=I i=l

Thus these arc the conditions under which (4.14) evolves in the orthogona] group
and the conditions under which (4.11) evolves on the sphere.

It is apparent that the measure associated with the uniform density on the
sphere is an invariant measure for the process defined by equation (4.11). Since
the area of the (n 1)-sphere is 2rc"/2/F(n/2) the uniform density is

(4.16) po(X) F(n/2)/2rc"/2.

The corresponding values of the odd moments are zero by symmetry but the
even moments are not. The following theorem claims that all the moments
approach the moments associated with a uniform distribution if we have controlla-
bility. Incidentally, equation (4.13) provides a means for actually computing the
moments for all time in terms of their values at 0.
THEOREM 7. Suppose that A, B1, B2, B are all skew symmetric and suppose

that

(4.17) 2(0 A + ui(t)B x(t)
i=

is controllable on S"-. Then the solution of the ItO differential equation defined on
the sphere by

(4.18) dx(t) A +
i=1 i=1

is such that all moments approach the moments associated with a uniform distribu-
tion on the n sphere as approaches infinity.

Proof. First of all, note the shift in notation from (4.11) to (4.18). In (4.11)
A + 1/2- B/2 is playing the role played by A alone here. It is not difficult to showD
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224 R.W. BROCKETT

that because A, B1,B2, ..., B are skew symmetric it follows that A[PI, B[lP]
Bt2P, Btmp are also skew symmetric. A second observation concerns stability.
If A A’ and B B’i, then all solutions of the ordinary differential equation

(4.19) 2(t)= A + 1/2 B2 x(t)
i=1

are bounded. Moreover, each solution approaches zero as approaches infinity
provided Bieatx does not vanish identically for any x 4:0 and there will exist
nonzero vectors such that Bi eAtx vanishes identically if and only if A and B
can be put in the form

(4.20) O’AO O’BiO
0 A2

To prove the first of these facts we notice that since A -A’,

__d x(t)2 IIBx(t) 2.(4.21)
dt i=x

Thus by LaSalle’s theorem (see, for example, [2]) the solution either goes to zero
or else there is a solution along which IIBix(t)ll vanishes identically for all i. That
solution would have to be of the form eA’Xo As for the conditions on A and B,
they follow from considering the subspace of vectors such that B eA’x vanishes,
together with its orthogonal complement, making use of the skew symmetry of
A, B1,B2, ..., B,,.

Clearly controllability implies that all solutions of the mean equation approach
zero as approaches infinity because controllable systems cannot be decomposed
as indicated. As for the higher moments, we must distinguish between the even
and odd cases. For the odd cases if there is a decomposition, then controllability
of the equation (4.17) is clearly impossible. For the even moments, we have in
view of the identity IlxtPall 2 Ilx[] 2p, a decomposition of the type given by (4.20)
but with the zero block in B being one-dimensional. The one-dimensional sub-
space defines the steady state value of the even moments. On the orthogonal
complement the equation (4.18) is asymptotically stable. These remarks are
related to some well-known properties of orthogonal representations of Lie
algebras.
As is well known, the moments xtpl are related to the spherical harmonics in a

direct way. Thus by working with equation (4.13) it is possible to obtain a full
solution to the Fokker-Plank equation associated with the Ito equation (4.18).
The interpretation of the moments in terms of spherical harmonics also allows
one to establish some qualitative features of the probability density. In particular
its smoothness and convergence to the steady state can be easily studied.

REFERENCES

[11 R. W. BROCKETT, System theory on group manifolds and coset spaces, SIAM J. Control, 10 (1972),
pp. 265-284.

[2] , Finite Dimensional Linear Systems, John Wiley, New York, 1970.D
ow

nl
oa

de
d 

02
/1

9/
15

 to
 2

06
.1

96
.1

84
.9

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



CONTROL SYSTEMS DEFINED ON SPHERES 225

[3] E. WONG, Stochastic Processes in Information and Dynamical Systems, McGraw-Hill, New York,
1971.

I4] R. HZrMaNN, On the accessibility problem in control theory, International Symposium on Non-
linear Differential Equations and Nonlinear Mechanics, Academic Press, New York, 1963,
pp. 325-332.

I53 C. LOBRV, Contr6labilitO des systkmes non linOares, SIAM J. Control, 8 (1970), pp. 573-605.
[6] G. W. HaYNzS AND H. HZlMS, Nonlinear controllability via Lie theory, Ibid., 8 (1970), pp.

450-460.
I7] J. Kucza, Solution in large of control problem: (A(1 u) + Bu)x, Czech. Math. J., 16

(1966), no. 91, pp. 600-623.
[8 --, Solution in large ofcontrolproblem: (Au + Bu)x, Ibid., 17 (1967), no. 92, pp. 91-96.

I9] --, On accessibility ofbilinear systems, Ibid., 20 (1970), no. 95, pp. 160-168.
10] V. JURDJEVIC AND H. J. SUSSMANN, Control systems on Lie groups, J. Differential Equations, 12

(1972), no. 2, pp. 313-329.
11] H. SaMUISOY, Topology of Lie groups, Bull. Amer. Math. Soc., 58 (1952), pp. 2-37.
12] ----, Notes on Lie Algebras, Van Nostrand Reinhold, New York, 1969.
[13 R. W. B,OCl<TT, On the algebraic structure of bilinear systems, Theory and Applications of

Variable Structure Systems, R. Mohler and A. Ruberti, eds. Academic Press, New York,
1972.

[14] L. S. POYTYaGN, V. BOTYaNSKn, R. GaMKDZ AND E. MSHCHZNKO, The Mathematical
Theory of Optimal Processes, Interscience, New York, 1962.

[15] L. CzsartI, Existence theoremsfor optimal solutions in Lagrange and Pontryagin problems, SIAM
J. Control, 3 (1965), pp. 475-498.

[16] K. Ia’6, Stochastic differential equations on a differentiable manifoM, Nagoya Math. J., (1950),
pp. 35-47.

[17] R. W. BocKra AND J. C. WILLEMS, Average value criteria for stochastic stability, Stability of
Stochastic Dynamical Systems, Springer Verlag Lecture Notes on Mathematics, vol. 294,
1972.

D
ow

nl
oa

de
d 

02
/1

9/
15

 to
 2

06
.1

96
.1

84
.9

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


