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1. Introduction. In this paper we shall consider solutions of the

equation

dUit)
(1) —^- = Ait)Uit),       17(0) = /,

at

where A and U are linear operators, and / is the identity operator.

Our results will be applicable when the operator A it) can be written

as

m

■^ it) — S aiit)Xi,       m finite,
;=i

where the a,-(i) are scalar functions of t, and the operators Xf are

independent of t. It is further required that the Lie algebra £ gener-

ated by the X< under the commutator product [X{, X¡]=XíXj

— XjXi be of finite dimension /. The above is, of course, always true

if A (and U) are finite matrix operators.

In 1954, W. Magnus [4] proved that if Xu X2, • • • , X¡ is a basis

for £, then the solution of (1) can be expressed in the form /7(f)

= exp(2í=i giit)Xi). This representation of U holds, however, only

in a neighborhood of the origin. It has been shown by J. Mariani

and W. Magnus [3] that even in the case of 2X2 matrices a global

version of Magnus' result cannot be obtained without severe restric-

tions on Ait).

We will show that if U is a solution of (1), it can be represented

in the form

(2) U(t) =n«*P (!<(<)*<).
1=1

This representation is global for all solvable Lie algebras, and for any

real 2X2 system of equations.

The form (2) derives its principal utility from the fact that insight

into the properties of t/(£) can be gained through a knowledge of the

spectral properties of the individual operators X<. Since the Xi's are
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constant, and often have simple physical interpretations, one has a

good chance of obtaining their spectral properties.

2. Preliminaries. In the sequel it will be convenient to refer to

the independent variable as "time."

Suppose the linear operator A it) can be expressed in the form

m

(3) Ait) = Z aiiOXi,       m finite,
¿=i

where the a¿(í) are scalar functions of time, and Xi, A2, • • • , Xm are

time-independent operators. If m is chosen as small as possible, the

A.'s will be linearly independent. We shall denote by R the associa-

tive algebra generated by Xi, X2, ■ ■ ■ , Xm over the field of complex

numbers; and by £ the Lie algebra generated by Xx, • • • , Xm under

the commutator product [Xit X¡]=XíXj — XjXí, i.e., the Lie ele-

ments of R. R may be infinite-dimensional, but we shall assume that

£ is of finite dimension /.

We will require the following two lemmas.

(i) (Baker-Hausdorff). //, x, yE£, then exye~xE£, and is given

by the explicit formula

(4) e*ye-* = y + [x, y] + [x, [x, y]]/2l + [x[x, [x, y]]]/3\ + • ■ ■ .

A proof is given in Magnus [4].

If we use the notation, adx, to represent the linear operator on £

defined by

iadx)y = [x, y]

iadx)2y = [x, [x, y]], etc.

then the Baker-Hausdorff formula (4) can be rewritten as

(5) exye~x = ieadx)y.

(ii) Let Xx, X2, ■ • ■ , Xibea basis for £ with the multiplication table

[Xi, Xj]=ZUiriXk, *, j=l, 2, ■ • • , /. Then

(6) ( fl expCfoX,)) Xi ( JJ expi-Si*!)) = E &Ä,
\ >=1 / \ i=r / 4-1

r - 1, 2, • • •, /,

where each £fc,- = £*.-(gi, • • • , gi) is an analytic function of gi to gr.

Proof. Repeated application of the previous lemma shows that

the left-hand side of (6) is in £, and hence can be written as a linear
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combination of Xi to Xi as asserted. It remains to show that the

£¡u are analytic. It is sufficient to prove the result for r=l since an

analytic function of an analytic function is again analytic. For r = 1

we have from (4)

exp(giXi)X¿exp(-giXi) = exp(giadX,)X¿

n

= Xi + ¿ — iadXiYXi.
n-i re!

Now

(7) (adXi)"Xi = X tiff M , ■ • ■ , Ti"    Xin,     ih ■ ■ ■ , in = I, ■ ■ ■ , I.
1 n+l

Let M be the maximum of |7?y|, i, j, k= 1, • • • , /. Estimating each

7Í*       in (7) by M we obtain

IEtiV--I =wf.
Since (lM)"/n\ is the general term of a convergent series the lemma

is proved.

3. The local theorem.

Theorem 1. Let A (t) be given by (3), and let the Lie algebra £ gener-

ated by A(t) be of finite dimension I. Then there exists a neighborhood of

t = 0 in which the solution of the equation

dU
(8) — = Aii)U,       UiO) = I

at

may be expressed in the form

(9) Vit) = exp(giWXi) exp(g2(/)X2) • • • exp(g,(0*<),

where the g,(/) are scalar functions of time. Moreover, the g,(t) satisfy a

set of differential equations which depend only on the Lie algebra £, and

the Oiit)'s.

Proof. The representation (9) is immediate from the Magnus

representation via the second canonical coordinate system. We will,

however, prove this fact again in the course of deriving the differen-

tial equations satisfied by the g,(t).

First note that we might just as well write Ait) = 23'= i Oi(t)Xi

instead of Ait)= 2™i Oiit)Xi by simply setting at(t) =0 for i>m.

Note also that at time t = 0, U(0) =1 is in the form (9) with all gi(t)
= 0.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



330 J. WEI AND E. NORMAN [April

Now let U be of the form (9). Since

(10)

dU

dl
= E «i(0( h exp(foYy) AjJ exp igjX,))

i-l \ 1=1 i—i /1=1

I

¿tf = Ea.(0A,-i/.

We obtain upon substitution of (10) into (8), and post-multiplication

by the inverse operator f/_1

(ID

¿a.(i)A,= EgíwfnexpígyA^A,  ü exp(-gjA3))
t=l <=1 \ j=l j=i-l /

= Zg.'wfnexp^adXyAx,.
»=l \ y=i /

Application of Lemma (ii) to the terms on the right of equation (11)

yields

(12) Zakit)Xk= ZZgiiDhiXk-
k=l i=l i-1

Since the operators Xk are linearly independent we have a linear rela-

tion between the akQ) and the &'(i). The elements £A; of the trans-

form matrix £ are analytic functions of the g/s.

(13)

a

'ax'

(12

L-aiJ

S

u« ad

■"gi'-1

«(0) = o.

Since the £« are analytic functions of g, we have that the determinant

A of £ is an analytic function of g. We also know that at t = 0, ¡- = 1,

and hence A(0)?i0. These two facts show that there must exist a

neighborhood A0 of t = 0 in which A 5^0, i.e., in which £ is invertible.

We can thus write (13) in the form

(14) 7=/(«) = ry    g(o) = o, ten0.
at

Since £-1 is analytic in No, we are assured of a neighborhood of t = 0 in

which the solution of (14) exists and is unique. This completes the

proof of the theorem.
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Example. Let dU/dt = iaxit)H+a2it)E+a3it)F) U, where H, E, and

F are constant linear operators with the Lie multiplication table

[E, F] = H; [E, H] = 2E; [F, H]=-2F. Setting U = e°^iIe°^Ee°^F,

we obtain

axH + a2E + azF = g{ H + giie^adH)E + g/fy*«»««««)/?

.  .  = e-2ilJE
(2gi)2

(e»i«w)£ = E - 2gxE + -
2!

fgQiadBgiHfldlSjp -   fgQxadBjtp _|_ g2JJ _L. g2£)

= e2"iF + g2H + g2e-2«iE.

Hence gx, g2, gs satisfy the equations

"1    0

0   e

a

b

c J LO   0
2si

g2

4. Global results.

Theorem 2. 7/ £ is solvable, then there exists a basis, and an order-

ing of this basis, for which Theorem 1 is global.

Proof. A theorem of Lie states that if £ is solvable, then there

exists a chain of ideals 0C7¡C7¡-iC • • • C7a=£, where each Lm

is exactly of dimension l — m + l. It is easy to see that there is a basis

Xx, X2, ■ ■ ■ , Xi for £ which can be arranged so that Lm is the ideal

generated by Xm, • • ■ , X¡. With this arrangement the multiplication

table for £ becomes

(15) [Xi, Xj] = Z yijXk       for i > j.

Since (Y['i-\ expigjadXj))Xi= Et-i hiXk= Zt-t £k<Xk, we have that
^ki = 0 for i>k. It is clear that £*, depends only on g¡ with j<k; thus

system £g'=a is in triangular form. To show that £g' = a has a solu-

tion for all t lor which ait) is continuous, it is sufficient to prove that

the diagonal elements £,-< never vanish. We shall show that £„■

= expiZij~i gilji)- This is readily seen since, by use of Lemma (i),

one finds that

expigi-iadXi-i)Xi = Xi + gi-xyi-i,iXi + terms in 7i+i
i 2

+ (s¿-i7.-i,;) /2!Aí+ terms in Li+1+ ■ ■ ■

= Xi exp(gi_!7 ■_!,,) + terms in 7.-+1.
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The proof is completed by repetition of the above argument.

There is an interesting formula due to Zassenhaus [see 4, p. 661]

which states that if X, Y generate the free algebra £, then ex+Y

= exeYeciec3 • ■ ■ ec» ■ ■ ■ , where Cn is unique and exactly of degree

n in X, Y. Magnus gives a method by which the C» may be found

recursively. For solvable algebras Theorem 2 yields the following

sharpening of the Zassenhaus formula.

Corollary. // X%, ■ ■ ■ , Xm generate a solvable Lie algebra £ of

dimension I, then

exp( £ diXA = II exp(g¿F,),
\ i-i /      «=i

where Ft, • • • , Yt is a suitable basis for £. The g¿ can be found by

quadrature.

Theorem 2 allows us to confine our attention to the case where £

is semisimple. To see this we make use of Levi's theorem (see Jacob-

son [2, p. 91]); £ may be decomposed into the direct sum £=Lo+Li,

where Lo is the radical of £, and Zi is a semisimple subalgebra of £.

In the equation dU/dt = Ait)U, where Ait) generates £, the decom-

position £ = /o+/i gives rise to the corresponding decomposition,

A =Ao+Ai of A, where Ai is in L,-. If we have proved that Theorem 1

is global for all semisimple Lie algebras as well as all solvable Lie

algebras, then the following scheme extends the result to £. Let

dU
(16) -= AU = iA0+ Ai)U.

dt

Define UB, and t/,, by dUi/dt = AiUu dUo/dt=iUr1A0Ui)Uo. Since
Lo is an ideal in £, we see (by Lemma (i)) that Ur1AoUi is in L0. It is

easy to verify that U= UiUo satisfies (16).

If £ is semisimple, the global nature of Theorem 1 is in doubt. The

examples below show that the choice of basis is critical.

Example 1. Let dU/dt = A U with A a 3X3 antisymmetric matrix.

A generates the Lie algebra Xi = Ei2 — En, X2 = En — En, Xz = E23

— £32, [Xi, X2]= —Xz, [Xi, X3]=X2, [X2, X3]= —Xi. If we assume

a solution of the form U = e^W^e1'*' and compute the correspond-

ing £ matrix, we find that |£| =cos g2. Hence £ is not invertible for

all time, and the representation is not global. We get the same result

for any ordering of the above basis.

Example 2. This example shows that even if £ is invertible for all

time, the representation by a product of exponentials need not be
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global. Let dU/dt = A U with A continuous for 0ÚK °°. an= —a22,

and

"I•6 -4"

5      6.
for 0 ^ I < 1.

The Lie algebra generated by A is the same as that given in the exam-

ple of §3. If we assume a solution of the form [/=exp(gii/)exp(g2£)

exp(g3F)> we find that for 0^/<l, e"i = cosh 4i—(3/2) sinh At. Thus,

gi(i) = — oo at t = (1/8) In 5, and the representation is not global. In

this example | £ | = 1 so that £ is always invertible.

The next example is interesting enough to state as a theorem.

Theorem 3. If dU/dt = BU, where B is any real continuous 2X2

matrix, then U has the form U = expigiK)expig2A)expig3N)expigiI),

where K = Ei2 — E2i, A=Eu — E22, N=En, and I is the identity; this

representation is global.

Proof. Let B = S+aI, S generates the algebra {K, A, N}. Then

U has the form Ve"*1 with gi = f¿air)dT and dV/dt = SV. Theorem 1

shows that V has the required form in a neighborhood of the origin.

Now,

expigxK) exp(g2^) exp(g3A0

e«cosgi        g3e"s cos gi + e-« sin gi"|      fVn   Fi2"|

. — en sin gi     — g3e"» sin gi + e~m cos gj      LF2i   F22J

Solving for the gi in terms of the F¿y gives gi= — Arctan(F2i/Fn),

g2=(l/2) In (F?, + F¿), g3=(FnFi2+F2iF22)/(F121+F22i). Since Fis

nonsingular for all time, Vu and F2i cannot vanish simultaneously.

Hence the g< are analytic functions of the VaiVa assumed real).

This completes the proof.

If dU/dt = AU, where A generates £= {Xu • ■ ■ , X¡}, then we

may consider the representation U= JJ exp(g¿X¿) as a transforma-

tion of coordinates. In order that the above representation be global,

it is clearly necessary and sufficient that (a) the mapping of the Lie

algebra £ to the solution space of dU/dt = A U is onto, and (b) the

Jacobian, JiU/g), of the transformation has rank I for all time. The

second condition is fairly easy to investigate.

Theorem 4. Let d U/dt = AU=i 22Ui a,Xx) U, and let £ be the matrix

of Theorem 1. Then the rank of I is the same as the rank of £ whenever

the two matrices are defined ii.e., whenever gi, ■ • ■ , gi are bounded).
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Proof.

dU     *=1 J_
— = 11 expigiXi)Xk 11 expigiXi)
Ogk ¿-1 i=k

dU /*=! \ '
-Í/"1 = Ml expigiOdXi) )Xk = Z Z*Xi-
dgk \ i=i / «=i

Therefore, JU~l = ^X, where X is the "vector" (Xu ■ ■ ■ , Xi)T. Since

U~l is nonsingular, J and £ must have the same rank.

The next theorem shows that there do exist bases for which £ is

invertible.

Theorem 5. Let £ be a split Lie algebra of dimension I. Then £ can

be decomposed, (e.g. the root space decomposition), into £ = Lx®L2

where Lx and L2 are solvable subalgebras. There exists a basis, and an

ordering of this basis, for which the matrix £ of Theorem 1 is always non-

singular.

Proof. For Li choose the basis and ordering as in Theorem 2, say

Xi, • • • , Xm. Then £ will have the form

VA    *1

Ko *]■
where A is upper triangular and nonsingular. Hence £ is invertible

if B is. Let Fi, • • • , F„ be a basis for B. The ¿th column of B con-

sists of the coefficients of Y\, • • • , Yn in the expansion of

(Yl?,xexpiadgiXi))iYl*ZlexpiadhjYj))Yk. Now, the operator
[J^.i expiadgiXi) is an automorphism of £, so that it is enough to

show that the matrix Bx with &th column the coefficients of Fi, • • •, F„

in the expansion of (IJ*!]1 expiadhjX¡)) Yk is nonsingular. Bx is just

the ¿¡-matrix for the algebra L2, and since ¿2 is solvable, Fi, • • • , F„

can be chosen so that Bx is nonsingular.
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