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Motion Control of Drift-Free,
Left-Invariant Systems on Lie Groups

Naomi Ehrich Leonard, Member, IEEE, and P. S. Krishnaprasad, Fellow, IEEE

Abstract—In this paper we address the constructive control-
lability problem for drift-free, left-invariant systems on finite-
dimensional Lie groups with fewer controls than state dimension.
We consider small (¢) amplitude, low-frequency, periodically
time-varying controls and derive average solutions for system
behavior. We show how the pth-order average formula can be
used to construct open-loop controls for point-to-point maneu-
vering of systems which require up to (p — 1) iterations of Lie
brackets to satisfy the Lie algebra controllability rank condition.
In the cases p = 2.3, we give algorithms for constructing these
controls as a function of structure constants that define the
control authority, i.e., the actuator capability, of the system.
The algorithms are based on a geometric interpretation of the
average formulas and produce sinusoidal controls that solve
the constructive controllability problem with ()(¢") accuracy in
general (exactly if the Lie algebra is nilpotent). The methodology
is applicable to a variety of control problems and is illustrated
for the motion control problem of an autonomous underwater
vehicle with as few as three control inputs.

[. INTRODUCTION

ECENT work in nonlinear control has drawn attention

to drift-free systems with fewer controls than state vari-
ables. These arise in problems of motion planning for wheeled
robots subject to nonholonomic constraints [22], [23], models
of kinematic drift (or geometric phase) effects in space systems
subject to appendage vibrations or articulations [12], [13],
and models of self-propulsion of paramecia at low Reynolds
numbers [26]. The basic state-space model takes the form

= z Filx)u;. +€R". w R, m<n. (1)

i=1

It is well known that if the vector fields F; satisfy a Lie algebra
rank condition, then there exists a control u = (wuy, -+, %)
that drives the system to the origin from any initial state.
Unlike the linear setting where the controllability Grammian
yields constructive controls. however, here the rank condition
does not lead immediately to an explicit procedure for con-
structing controls. As a result, recent research has focused
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on constructing controls to achieve complete controllability
[2]. [8], [14]. [20], [22], [23]. The success of constructive
procedures based on periodically time-varying controls [8],
[20], [22], [23] motivates our investigation,

Our interest in this paper is in constructive controllability
using periodic forcing of drift-free, left-invariant systems of
the form

{ = eXU. U(t)=)_ Awui(t) )
i=1

evolving on matrix Lie groups. Here, X (¢) is a curve in a
matrix Lie group & of dimension n, U(t) is a curve in the Lie
algebra G of G, m < n and {A;,---, A, } are a basis for G.
The Lie bracket [-. -] on the matrix Lie algebra G is defined to
be the matrix commutator [A, B] = AB — BA, for A,B € G.
(For an introduction to matrix Lie groups and Lie algebras,
see [6].) The w,(-) are assumed to be periodic functions of
common period 7. ¢ is a small parameter (0 < ¢ < 1) such
that eu;(-) are interpreted as small-amplitude periodic control
inputs. The set {A,,---, A, }, where (u;,---,u,,) can be
actuated independently, represents the control authority of the
system.

Our goal is to solve the complete constructive controllability
problem for systems of the form (2) which can be stated
formally as:

P) Given an initial condition X; € G, a final condition X

€ G and atime ty > 0, find u(t) = (11 (1), -, um(t)),

t € [0,1y], such that X(0) = X; and X(t¢) = Xy.
Our approach is to derive averaging theory for systems on
matrix Lie groups of the form (2) and then to use the
average formulas to specify open-loop controls that solve P),
at least approximately. The controls are designed to drive an
average system solution exactly, thereby driving the actual
system approximately. Open-loop controls can be used to
exploit a priori knowledge of the system for improved system
performance and reduced control effort. Intermittent feedback
can then be used in conjunction with the open-loop control to
reduce sensitivity to disturbances. (For related ideas, see [4].)
Feedback control laws, including time-varying feedback, and
discontinuous feedback have been studied for nonholonomic
systems ([5], [9], [25], [27]).

Equation (2) provides a general framework, or normal
form, for a class of systems that includes rigid body motion
control problems. For many of these problems, the system
configuration space is globally described by a matrix Lie group
making (2) a natural system model. The Lie group framework
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then leads to coordinate-free expressions for system behavior
and ultimately to coordinate-free control algorithms. Further,
when the systems on Lie groups are left invariant, there is a
globalness to our solutions. That is, even if we exploit local
charts to make small maneuvers, the Lie group framework
allows us to move all over the configuration space without
reformulating our control. This is because we can always treat
the current position of the system as if it were the identity in
the Lie group.

An important focus of our work is to exploit the Lie group
structure to derive formulas for system response. Specifically,
we show the utility of area and moment-like expressions in
the controls and structure constants of the Lie algebra. The
structure constants enable us to encode control authority, thus
ensuring that our results naturally account for changes in
control authority due to events such as actuator failures. This
leads easily to constructive procedures for on-line adaptation
to changes in control authority.

Averaging is used to describe an approximate solution to
(2) that evolves on the matrix Lie group &, remains close to
the actoal solution to (2), and gives rise to straightforward
procedures for specifying controls to address P). Averaging
in this context is motivated by the work of Brockett [3] in
which an averaging argument was used to describe the secular
(linear in time) motion of the well-known two-input nilpotent
system on R* often referred to as the Brockett system. We
extend the argument to high-order averages and to systems on
finite-dimensional Lie groups.

Liu and Sussmann [20], [30] also develop averaging theory
to derive approximate tracking control for drift-free sys-
tems. They apply averaging theory to drift-free systems on
a manifold M with highly oscillatory control inputs. Given
a trajectory of a suitable “extended” system, their goal is
to find a trajectory of the original system that converges to
the given trajectory and use this result to derive approximate
tracking controls. We, on the other hand, do not attempt to
address all drift-free systems, but rather take a close look
at a class of drift-free systems, i.e., those of the form (2),
and exploit the Lie group framework as described above to
great benefit. Additionally, while Liu and Sussmann consider
high-amplitude, high-frequency control inputs, we consider
small-amplitude, low-frequency control inputs. One approach
is equivalent to the other by scaling time by ¢. The result is that
maneuvers in the Liu and Sussmann time scale are completed
in one unit of time, while in our time scale maneuvers are
completed in O(1/¢) units of time. Our small-amplitude, low-
frequency controls are gentler on the system, however, and
avoid significant off-course excursions.

Murray and Sastry [22], [23] and Lafferiere and Sussmann
[14] derive control inputs to exactly steer drift-free systems
that can be transformed into a nilpotent form, sometimes
referred to as “‘chained form.” Nilpotency refers to the fact
that high-order Lie brackets of vector fields are identically
zero. Our Lie group framework includes the case of nilpotent
systems. For instance, certain chained-form systems can be
represented in form (2) where the Lie group & is unipotent,
i.e., is upper triangular with ones along the diagonal, and the
Lie algebra G is strictly upper triangular (nilpotent). For these
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nilpotent systems, our results provide exact steering controls.
The fourth example below illustrates a chained-form system
put in the form of (2).

There are special cases of drift-free systems that can be
controlled exactly where our methods produce only an approx-
imate solution. For instance, in [31], Walsh and Sastry describe
a method to derive controls to exactly orient a spacecraft with
two internal rotors configured about two of the principal axes.
In this work, however, large motions are necessary to reorient
the spacecraft. We emphasize that our framework is more
general, allowing for a large class of systems and control input
configurations and producing controls that keep the system
state relatively close to any desired path. Further. as in [12] and
[13], our solutions give a means to compute drifts in system
behavior caused by undesirable oscillations. Kinematic drift of
a spacecraft caused by thermo-elastically induced vibrations in
flexible attachments on the spacecraft is an example; cf., [12]
and [13].

To further motivate the Lie group framework we give four
examples.

Spacecraft Example: Equation (2) describes the kinematic
spacecraft attitude control problem if we interpret U(t) as the
time-dependent skew symmetric matrix of spacecraft angular
velocity such that X evolves on G = SO(3), the special
orthogonal group, where

SO(k) £ {A e RE* | ATA =1, det(A) =1}).

Define X (t) € SO(3) to be the curve of rotations that maps
a body-fixed orthonormal coordinate frame into an inertial
coordinate frame. That is, =, = X(t)zs, where x, is any
point on the spacecraft described with respect to the body-
fixed frame and z, is the same point expressed with respect
to the inertial frame. Then X (t) describes the attitude of the
spacecraft at time ¢. Define ": R® — so(3) where so(3) is the
space of 3 x 3 skew symmetric matrices and = = (21, 22, 23)7
by

0 -—-z3 x2
i= T3 0 —I (3)
=—I2 I 0

Let e; = (1,0,0)7, s = (0,1,0)7, and e3 = (0,0,1)7, and
define A; = ¢é;, i = 1,2,3. Then {A;, Ay, A3} is a (standard)
basis for G = so(3) and X (t) satisfies
3
X=X0 Q)= Zﬂi(t}A,-

i=1

)

where @ = (1,0, 23)7 is the angular velocity of the
spacecraft in body-fixed coordinates. Now suppose angular
momentum of the spacecraft is conserved and equal to zero,
i.e., there is no external torque applied to the spacecraft. Then
it is possible to interpret the components of angular velocity,
4,825,824, as our small-amplitude, periodic controls, e.g.,
ew; = ), 1 = 1,2,3. For instance, the angular velocities
could be effected using internal rotors. Alternatively, a point
mass oscillator appended to the spacecraft could be used to
control angular velocity (cf., [16]). With this interpretation,
(4) takes the form of (2) with G = SO(3), n = 3, and
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m < 3 as the number of independent actuators. We note that
any control configuration can be represented by choosing the
appropriate basis for so(3). For example, suppose there are
only two independent control inputs defined by eny = 2, + Q9
and eus = 0 + 3 (and eus = 0). Then the system is
described by (2) with {B;, By, B3} as our basis for so(3)
where By = A, + Ay, By = Ao + Aa, By = Aj. Details
of averaging and constructive controllability applied to the
spacecraft can be found in [18].

Unicycle Example: Equation (2) describes the motion plan-
ning problem for a unicycle which rolls without slipping if
we interpret U(¢) as the appropriate time-dependent matrix of
steering velocity and translational velocity such that X evolves
on G = SE(2), the special Euclidean group, where

snw}é{[ﬁ ?}eﬂ”““”*”|A€SO&LbG&#}
Here, we define X (1) € SE(2) to be the planar rigid body
transformation that maps a body-fixed orthonormal frame into
an inertial frame so that X (#) describes the position at time ¢
of the unicycle in the plane and its orientation at time ¢ with
respect to an inertially fixed axis. That is, for z; a point on
the unicycle described in terms of body-fixed coordinates and
x, the same point expressed in terms of inertial coordinates,
[#, 11" = X(#)|z, 1]7. In terms of local coordinates (z,y,f)
where (x,y) describes the unicycle’s position and ¢ the
unicycle’s orientation on a plane relative to the inertial frame,
X can be expressed as

cosfl —sinf x
X = |sinfl  cosf y
0 0 1
Suppose that uw; = 6 (steering speed) and uy = v (rolling
speed) are available as controls and let
0 -1 0 001
Air=11 0 0], As= 10 0 0 (5)
o 0 0 0 0 0

and A3 = [A;. As). Then {A;, A5, A3} defines a basis for
se(2), the Lie algebra associated with SE(2), and X (#) satisfies

(6)

where we have assumed small-amplitude controls. Equation
(6) is of the form (2) with G = SE(2), n = 3, and m = 2
and takes the same form as the spacecraft control problem
with two internal rotors. Details of averaging and constructive
controllability applied to the unicycle problem can be found in
[18]. There it is illustrated that the controls derived to steer the
unicycle are identical to those derived to control the spacecraft
with two internal rotors as a result of the two systems taking
the same form (6).

Underwater Vehicle Example: Equation (2) describes the
kinematic motion control problem for an autonomous under-
water vehicle (AUV) if we interpret U(¢) as the appropriate
time-dependent matrix of vehicle angular and translational
velocities such that X evolves on G = SE(3) (see [28]
for another study of an AUV on SE(3)). In this case, we

X = eX (A + Asus)

1541

define X(t) € SE(3) to be the rigid body transformation
that maps a body-fixed orthonormal frame into an inertial
frame so that X (¢) describes the position and orientation in
three-dimensional space of the underwater vehicle at time ¢.
Let

é; 0
) |ooo o

A; =
0 €;_3 o
[000 0 } i=4,5,6.

Then {A;,---,Ag} defines a basis for G = se(3), the Lie
algebra associated with SE(3). Now let = (Q,Qz,823)7
define the angular velocity of the vehicle and v = (v;. vz, v3)7
the vehicle translational velocity, all with respect to the body-
fixed coordinate frame. Then X () satisfies

3 6
X = x(zni{z}ﬁ” 115_3(!)/’1;).
=4

§=1 i

} ve==1,23
@

(8)

We assume that we can interpret the components of €2(#) and
v(t) as controls such that (8) is of the form (2), e.g., let
eu; = (4, 1 = 1,2,3 and eu; = v;_3, ¢ = 4,5,6. In this
case G = SE(3), n = 6, and m = 6. If there are fewer than
six independent actuators, i.e., m < 6, then some of the eu;
are identically zero. A different choice of basis for se(3) and
a different value of m reflects a different control authority.

Nilpotent System Example: As described above, systems in
chained form can also typically be put in the form of drift-free,
left-invariant systems on matrix Lie groups (2). As an example,
consider the front-wheel drive car which can be transformed
(locally about the origin) into a two-input chained-form system
on ®* [23]

T =

Ty =9

.’i‘,‘s = Tl

T4 = T3v. (9)

This system can be expressed (or embedded) as evolving on
the matrix Lie group consisting of elements of the form

1 zo z3 x4
0 1 @ =*
0 0 1 Ty
0o o0 0 1

X=

where = is arbitrary. A basis for the (nilpotent) Lie algebra
of this group is given by {Ay, A, Az, As} = {4y, As, [Ay,
AI]! [[AE.- A‘l]! ‘41}} where

0000 0100
00 10 00 0 0
h=lgp001|]* “4=|lo o0 o0
00 0 0 00 0 0

Then X (t) satisfies
X = EX(Alvl + AQ‘UQ} (10)

which is of the form (2) with n = 4, m = 2, where we have
assumed small-amplitude controls. Other two-input chained
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form systems, such as the kinematic car with k trailers, can
similarly be described in this form (cf., [16]).

The following is an outline of the remaining sections
of this paper. In Section II, we state some preliminaries
including definitions of geometric objects that play a key role
in the averaging formulas and two local representations of the
solution to (2). In Section III we prove second- and third-
order averaging theorems for systems of the form (2). Our
main results are an “area rule” for second-order averaging and
a “moment rule” for third-order averaging. A statement of
the general pth-order averaging theorem is given in Appendix
A. By the pth-order average solution X (P)| we mean that
given a metric d on the Lie group G, d(X(t), XP)(t))
O(e?), ¥t € [0.b/¢], b > 0. In Section IV, we show how
to use the average formulas for (approximate) constructive
controllability by deriving controls that steer the average
solution. The control laws become increasingly complex for
increasing order of averaging, and so we seek to minimize
the order of the average solution that we steer. A sufficiently
high-order average solution is needed, however, to capture
the controllability of the system. We determine p.,;, where
Pmin is the smallest p such that X?) can be driven from any
X, € G to any desired X; € GG and show that (ppin — 1)
is equal to the highest number of iterations of Lie brackets
used to satisfy the controllability Lie algebra rank condition.
The proof is constructive yielding algorithms that produce
continuous, small-amplitude, low-frequency, open-loop sinu-
soidal controls. The algorithms are driven by the structure
constants that define the control authority and controllability
of the system. In Section V we illustrate the algorithms for two
control configurations of an autonomous underwater vehicle.
Conclusions are given in Section VI

The results of this paper can be extended to the setting of
abstract finite-dimensional Lie groups (cf., [16]). To keep the
notation simple, we stick to the setting of matrix Lie groups.
This is sufficient for our examples.

II. PRELIMINARIES
Our average solutions X (*) depend on the geometric objects
described below. We make the following definitions assuming
that u(t) is periodic in ¢ with period T

™
Uay = (”’ﬂ\‘l! Tty Ha\';-n) ’

T
wi(7)dr,

So u = it and if w,, = 0 then  is periodic in ¢ with common
period T'.

Assume that u., = 0 and define Area;;(T) to be the area
bounded by the closed curve described by %; and i; over one
period, i.e., from { = 0 to £ = T. By Green's Theorem we
can express this area as

Uavi = 5 wi(t) =

m

Up = E '“-a\:

i=1

T
Area;j(T) = %f (ﬂx‘(ff)ﬁj( ) —iij(o ui(0))do

0

(11)
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This area can be interpreted as the projection onto the i-j

plane of the area enclosed by the curve (iy,- -+, %,,) in one
period. Define
ey o ik
a;;(t) = 2 f (wi(o)uj(e) — @;(o)u:(o))do.
(1]
Area;;(T)t
= AreetDE 4 1o (12)

where f(t + T) = f(t), f(0) = 0. Define

O B
mijk(T) = Ef (i(o)ij(o) — u;(0)uio))u(o)do. (13)
0
Now consider the closed curve C' defined by w;(t), @;(t), and
ity (t) over one period. Let A be any oriented surface with
boundary 4 = C. Then by Stokes’ Theorem

1
m,-j;,(T} = gf"—ﬁidﬁjd‘!}.k—ﬁjdﬁkdﬁ;+2ﬁkdﬁgdﬁj. (14)

So mjx(T') as described by (14) can be interpreted as a first
moment.

The average approximation X () will also depend on the
structure constants FE‘J- associated to a given basis for the Lie
algebra G. These are defined by

[4i, 41 =) TEA, iG=1,--,n. (15)

k=

We define a depth-¢ Lie bracket as p iterated brackets, e.g.,
a depth-one Lie bracket is of the form [A, B], a depth-two
bracket is of the form [A, [B,C]] or [[A, B],C], a depth-
three bracket is of the form [A,[B,[C,D]]], etc., where
A,B,C,D € G. A depth-zero bracket is just an element of
the Lie algebra G. We can then define structure constants
associated to higher depth brackets. For example, we de-
fine depth-two structure constants A7, associated with basis
{A1,--+, An} according to

[[A,'..AJ'],A;\-] = [z FijAh Ak] = Zrij[Ah Al‘]
=1
=) ) TiThA, = Za,Jk

ik

(16)
g=1I=1
Skew symmetry of the Lie bracket on G, [4, B] = —[B, 4],
implies ', = —T'%,. Further
Area;j(T) = —Areai(T), mijx(T) = —m;i(T).

Similarly, the Jacobi identity, [[4,B],C] + [[B,C], 4] +

[[C, 4], B] = 0, implies
Ok + 05y + 0%, =0 (17
Further
?TI-,;_;';,_-(T} -+ 7njk,-(?’} + mﬁj(T) =10. (18)

There are well-known controllability results for systems on
Lie groups of the form (2), e.g., [1], [10], and [29]. We use
[24] as a convenient reference. Let

C= {B I Bi= [B’h[Bk—l!["'\
B; e {Ay.---,

(B1, Bo) - - Il

A}, i=0,--- k). (19)
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By Proposition 3.15 of [24], for G a connected Lie group, if
G = span C then system (2) is controllable, i.e., a solution
to P) exists. We refer to this condition as the Lie algebra
controllability rank condition. If this condition is satisfied
using only up to depth-j brackets, i.e., & < j in (19), then
we say that system (2) is a depth-j bracket system.

Since, in general, there are no explicit global representations
of the solution to (2) we make use of local representations:
the product of exponentials representation given by Wei and
Norman [32] and the single exponential representation given
by Magnus [21]. We begin by defining the Wei—Norman
representation.

Lemma | (Wei and Norman): Let X(t) be the solution to
(2) with X(0) = I. Then 3t, > 0 such that for || < #y, X (1)
can be expressed in the form

X(t) = e (A1 g2() A2 | g ()AL (20)
The Wei-Norman parameters g = (gy.---,gn)7 satisfy
g =¢€eM(g)u, for|t| <tg 20

where g(0) = 0 and M(g) is a real analytic matrix-valued
function of g. If G is solvable then there exists a basis of G
and an ordering of this basis for which (21) holds globally, i.e.,
for all £, and in that case (21) can be integrated by quadrature.

As shown in the work of Wei and Norman, one can express
M({g) of (21) in terms of the structure constants of (2). For
llgll small

M(g) = I+£(g) + O(g*) (22)
where the ijth element of £(g) is
&ij(9) = Z 9T}, (23)

k=j+1

and O(g?) are higher order terms in the g;.

It is customary to refer to components of g as the canonical
coordinates of the second kind for G. Let W be the largest,
connected open neighborhood of 0 € R™ such that Vg € W,
M{g) is well defined. Let ®: R" — & define the mapping

B(g) = e 9242 | G0 An

(24)
and define V = ®(W) C G. Then, the Wei-Norman for-
mulation provides a local representation of the solution to
(2) for initial condition X(0) € V C G. Now let S be the
largest neighborhood of 0 € R" contained in W such that
¥ = ®|g: S — G is one-to-one. Let = ¥(S) € V. Then
U: § — @ is a diffeomorphism, and we can define a metric

dQxQ — R, by

d(Y.2) = d(¥7'(Y), ¥71(2)) (25)
where, for || || anormon R", d : R" x R" — R, is given by
d(a,3) = ||l - 8]l (26)

As an alternative to using the Wei—Norman representation of
solutions to (2), we consider Magnus’ single exponential rep-
resentation [21]. By Theorem III of [21] under an unspecified

1543

condition of convergence, the solution to (2) with X(0) =T
can be expressed as

_Z(t}

X(t)=e @7

where Z(t) € G is given by the infinite series (we show terms
up to O(e?))

Z(t)—cth[ d‘r+—f [O(r),U(7)]dr

2w

[f'f(f). [O(7), U())dr + - .

Ulo))do, U(T}] dr

+....._

12 @8)

While the convergence criterion for (28) is not given explic-
itly in [21], two different sufficient conditions are provided in
[11] and [7], respectively. Karasev and Mosolova [11] show
that (28) converges if

t
f ladeprylldm < In2. (29)
0
For G a finite-dimensional Lie group, the convergence condi-
tion (29) is equivalent to
t
f NA(eu{T))||dm < In2 (30)
0
where A(:) is an n x n matrix with #;jth element A;; () defined
by
Aij(v) = Zw]"h.
k=1
In the case that G = SO(3) and {A;. A,, A3} is the standard
basis for G = so(3), it is easy to compute that Aleu) = U
and so (30) is equivalent to

t
] |leU(7)||dm < In2.
0

The convergence criterion given by Fomenko and Chakon [7]

takes the form
. b

U()||d -

fo leU(lidr < a1
where M > 1 is defined such that ||[A, Bl|| < M||A]|||B]| for
all A, B € G and the universal constant b is the radius of a
disk over which a scalar differential equation, defined in [7],

has an analytic solution.
Let ¢: G — & define the mapping

Z = i z,-A,
i=1

Let S be the largest neighborhood of 0 € G such that
U= @IS § — @ is one-to-one. Let Q = ¥(S) C G. Then
0: 8- Q is a diffeomorphism and, for d given by (26), we
can define a metric d: Q x Q — R, by

A(X.Y) =d(I~1 (X)), b1(V).

b(2) = c?, (32)

(33)
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Following Lazard and Tits [15], define an admissible norm
on G as any norm || - || that makes (G, || - ||) a Banach space
and satisfies

4. Bl < [IANB]l. VA,Be€g.

Define B(G,p) = {A € G | ||A|| < p}. Then from Theorem
2.1 of [15], if the connected center of &, Cg,. is simply
connected, then the restriction of & to B(G,m) is one-to-one.
Consider a matrix Lie algebra ¢ C R™*" and the induced
matrix p-norm || - ||; on R™*". We can always construct an
admissible norm as || - || £ 2|| - ||, since

(A, Blllz = 2(|[A, Bllls = 2|AB — BA|;
< 4]l Allzl Blls = 1Al Bllz-

In the case of simply connected C', , we can take S = B(G, )
={Aeg||AllL <n}={Aeg]|]|Al; < m/2}. The
condition on C'g, holds, in particular, for finite-dimensional
Lie groups with trivial centers such as SO(3), SE(2), and
SE(3). Further, for simply connected Lie groups, we can
replace by 2, i.e., we can take S = B(G, 2r). Thus, for all
these kinds of Lie groups, we can be assured that our norm
d is well defined on a significantly sized neighborhood of the
identity in G.

We note that for X in a sufficiently small neighborhood of
the identity, knowing one local representation means knowing
the other approximately well.

Lemma 2: Given X € QNQ C G. let g = ¢~1(X) and
Z = U=1(X). Then g = O(e?) if and only if Z = O(e?),
= zi|| = O(e?), i =1,---,n.

Proof: The lemma is proved by expanding exponentials
and equating the two local representations. O

III. AVERAGING

Classical averaging theory is typically applied to systems
evolving on R". To derive averaging theory for systems
which evolve on Lie groups (2), we apply classical averaging
theory to local representations of (2) and then transfer such
estimates to the group level. The theorems in this section give
formulas for the pth-order average solutions X (P)(t), p = 2,3.
For illustration we make use of the Wei-Norman product of
exponentials representation for p = 2 and the Magnus single
exponential representation for p = 3. The first-order average
formula can be derived to be XV () = X(1(0)eVset, This
describes the effect of the dec component of U(t) on the system.
This is useful for control only if m = n. As a result, we focus
on higher-order average formulas which capture Lie bracket
motion of the system. A general pth-order averaging theorem
is given in Appendix A. The theorems below require smooth
controls; however, this requirement is relaxed in the appendix
where piecewise continuous controls are sufficient.

We note that these theorems state that the formulas are
valid for X(#) in a neighborhood of the identity of G.
Because system (2) is left invariant, however, these theorems
actually give the formulas for the pth-order approximation
X@®)(t) to the solution X (t) of (2) for any initial condition

X(0) € &, Let X(t) and X}p}(t} correspond to the actual
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and approximate solutions, respectively, of (2) with X;(0) =
I € G. By left invariance of (2), X(t) = X(0).X(¢) and
X®(t) = X({}}X}p)(t) is an (J(€”) approximation of X (¢).

Theorem 3 (Second-Order Averaging: Area Rule): Consider
system (2) on the Lie group G with Lie algebra G. Assume that
U(t) € G is periodic in ¢ with period T and has continuous
derivatives up to third order for t € [0,00) and assume that
Uw=0.Let D={g€R"||lgll <7} C S (where r > 0 is
chosen as large as possible). Suppose that X (0) = X, € Q.
Let g(t) be the solution to (21) with g(0) = go = ¥~ }(X,) =
O(e). Let g° = (187~ . gns)T and define

't m
. ET Z Arf.a,,J Etay,  (34)
J=ki
)i .
g (t) = etig(t) + wk(”s (35)
X(Q)(i) — ﬂygz'(!}-‘h .A.cgg}](t)flﬂ (36)

where I‘:‘J and Area;;(T) are defined by (15) and (11),
respectively. If ||go — qf]?]" =O(e?) and if ¢®(t) € D, ¥t €
[0,b/€], b > 0, then

d(X(t), X®(t)) = O(e%), Vte[0,b/e].
Proof: Recall by (21) and (22) that for small ||g/|
g =eM(g)u = cu+ eé(g)u+ e0(g%)u.

By second-order classical averaging theory (for details see
[16])

lg(t) = g2 ()| = O(e), vt € [0,b/e] G7
where
g P(t) = ea(t) + w(t)
and 1(t) is the solution to
w=el= E iw(o))u(e)de, w(0)= géz). (38)

From the definition of E (23), the kth component of the vector
E(it)u is

Zeh(u - Z Z H (39)
So using integration by parts, the fact that I‘" = ,1- ;= u

and the definition of Area,;(T) (11) we ger from substituting
(39) into (38) that

T ™
f th(u(o ui(o
21 z 2 ] I‘j,uj oo dﬂ+gk{2)

we(t) = a)do + qk( )

!——1 J_"H
Z f (i1;(o)n, (o) — (o )“J("])
i, =1i<j
x T% + t}u(}?)
t m
_ 62? Area,; (T)l",J + qh{,z).

ij=11<j
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For small enough ¢, since ¢'?)(t) € D C S then g(t) € D C
S, ¥t € [0, bff] So by definition of ¥, X(t) = U(g(t)),
and X2 (t) = U(g'?(¢)), Vt € [0,b/¢]. The theorem follows
by (37) and the definition of d, since d(X(t),XP(t)) =
llg(t) — g2 (8)|| = O(*), Vt € [0,b/e].

We show further in the next proposition that the structure
constants FfJ associated to a given basis for G are directly
related to the Lie brackets of the vector fields defined by the
columns of M(g) evaluated at g = 0.

Lemma 4: Suppose that w(t) is defined by (34). Let
[fi f2-+- fa] = M(g) where fi is the kth column of the
matrix M(g). Then

i(t) ~‘? Z Area;(T)(fis fillg=o + 95 (40)

i, j=1;<j

Proof: By (22) and (23) we have that

ZL,-H ."J’krslu -+ 0(92) 1

E::H—l gkl“iif” T 0(92]

fi= |1+ Xieis1 96Tk + O(g?)
ki1 9T + 0(g%)
E::H-l gil'k; + ()(92} E
So fori < j
of af;
[fis Fillo=o = 22| filg=0— == filg=0
1119 ag i q 39 9=0 1g
1 1
Gl [T
il e

which by (34) completes the proof.

According to Theorem 3, X m(t) can be expressed as a
product of exponentials where the exponents have an O(¢) pe-
riodic term and a secular term (a term linear in £). By (34) the
secular term is proportional to the structure constants T‘{-‘j and
the projected areas Area,;(7T") bounded by the closed curves
described by i; and i; over one period. This interpretation
justifies calling Theorem 3 an area rule.

The second-order average formula derived using the single-
exponential local representation for X () (as follows from
Theorem 9, Appendix A) takes the form

zm(f) = et Z Area;;(T + gk(ug}, (41)
Li=1lpi<y
Z® sz(f)ftk X@)(g) = 270, @2

A comparison of the two second-order average formulas shows
that 2(2)(¢) = g(2(¢).

1545

The revealing step in the proof of the single exponential
area rule shows that

2t 1T
Z2®1) = 2_Tt [ﬂ [0, U)(c)do

€2t T m i m 5
=57 |, [Z (o) Ai Y uj[rr)AJ] do
i=1 j=1
Y Area;(T)T%

2 n m
= ‘—Tt ( ) Ar.  @3)
k=1 \ij=li<j

This result confirms that the formulas X(®) are basis in-
dependent. Additionally, (43) reveals how the secular term
in the second-order approximation captures the effect of the
group level version of depth-one Lie brackets. This effect is
developed further in Section IV.

Theorem 5 (Third-Order Averaging: Moment Rule): Con-
sider system (2) on the Lie group G with Lie algebra G.
Assume that U(t) € G is periodic in £ with period T and
has continuous derivatives up to fourth order for ¢ € [0, cc).
Further, assume that U,, = 0 and Area;;(T) = 0, Vi, j. Let
D={Zeg||Z| <r} c S (where r > 0 is chosen as
large as possible). b is defined according to the convergence
criterion for (28). Suppose that X(0) = Xg. Let Z(t) be

given by (28) w1th Z(0) = Zg = ¥~1(Xp) = O(e?). Let

Z$) = T8 245 Ay. Define
() =iy (t)+ Y. a(OTY
i,j=lj<j
=Y Y SmaD + ), @)
k=11j=1i<j
Z('J)((_) = {3)‘4?__ Xm(t) Z3 (45)

q=1
where Hfjk and -m,-j;?(’l‘} are defined by (16) and (13), respec-
tively. If || Zo — ZV|| = O(e®) and if Z(3)(t) € D, Vt €
[0,b/€]
d(X(t), X3 (1)) = O(e®), Vt € [0,b/].
Proof: By classical averaging theory
1Z(t) = Z®(1)|| = O(e®), Vt e [0,b/e]

where (compare with formulas (28) for Z(¢))

(46)

2 [t
200(1) = D (t) + & / [0(r), U(r))dr
+— [/ [U(0),U(0))do, U(r) }dr
+ ﬁ fu [U(r), [O(r), U(r)Jdr + 22
2 t
= c(j’(t} + F—[ [I:'('r),U('r}]dT

/ [0 (), [0(r), U(dr + 29 @)

The second equahty is derived by integration by parts.
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By definition, we have that eU(t) =
Following the steps in (43)

% /D'[Er, Ul(o)do = Zn: ( Zm:

g=1 \i,j=1li<y

Zq 1 m’q (t)

ezaij(z}rfj) A, (48)

The third term on the right side of (47) can be expanded
as follows

o [ [0(r), [0(r), U(r))dr

7)dr[Ag, [4i, Aj]]
. Z ) f‘fémljk(T)guk)

Therefore, the expression for Z{*)(t) given by (44)~45) is
verified. For small enough e, since Z®() € D c § then
Z(t) € D C S, Vt € [0,b/€]. So by (27) X(t) = ?® =
W(Z(t)). The theorem follows by definition of X (%) (¢) and
d. O

The third term on the right side of (44) is a purely secular
term proportional to the first moments m;;x(7") and the depth-
two structure constants 87, associated with choice of basis for
G. This interpretation makes Theorem 5 a moment rule. The
average formula is clearly basis independent.

Remark 6: Since by (17)—(18) m,-_.,-k(T) + Tﬂjki(T] + Mkij
(T) = 0 and 67;; + 67, +8"' 2 =0

33 Y miu(DelA,

g=1 k=11i,j=1i<j

(49)

= Z Z (?nul Ux
q=1i,3=1;i<3
+ z (2m(T) — mskj{T))e?jk) A
k=i+1

Substituting this into the area-moment rule (44) incorporates
the Jacobi identity and removes redundant terms. This is
significant with regard to constructing controls to solve P).

IV. CONSTRUCTIVE CONTROLLABILITY

The strategy that we propose for solving P) approximately

can be summarized in four steps:

1) Choose intermediate target points X;, X, -,
tween X, and X; so that the ‘‘distance’”
successive target points is small.

2) Specify open-loop, small-amplitude, periodic controls
that drive X (¢) from X; to the first target point X,

X, be-
between
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approximately. To do so, specify controls that drive an
O(eP) average approximation of X (t) from X; to X,
exactly (p to be determined).

3) If desired, apply feedback, i.e., make appropriate modi-
fications based on measurement of the new system state.
For example, modify selection of intermediate target
points.

4) Repeat steps 2) and 3) for each successive target point
(letting the previous target point be the new initial
position) until done.

The fact that we can make a large maneuver by repeating
our technique on small steps relies on the left invariance of
our system. That is, we can always reinitialize at our current
position and identify it with the identity in the Lie group.

In the case of a nilpotent system, step 2) will drive X(t)
from X; to X; exactly. This is a result of the fact that high-
order Lie bracket terms are identically zero (ie., the formula
for Z(t) (28) is a finite sum), and so an appropriate average
provides an explicit solution to (2). The proof can be found
in [16].

For step 2), we use the average formulas of the previous
section. To determine p consider the series expansion (28) for
Z(t), which can be thought of (locally) as the logarithm of
X(t). One can observe that the O(¢P) term of this series is a
function of a depth-(p — 1) Lie bracket. Therefore, one expects
that to be able to control X (?) as desired, p must be greater
than or equal to py;, where (2) is a depth-(p,,;, — 1) bracket
system, i.e., the controllability rank condition is satisfied with
up to depth-(pumin — 1) brackets. We state this formally for
the cases p = 2.3. The general pth-order case is given in
Appendix A.

Theorem 7: Suppose that system (2) on the connected Lie
group G is a depth-(p — 1) bracket system, p = 2,3. Then
the complete constructive controllability problem P) can be
solved with O(cP) accuracy using the formulas for X (%)(¢),
k=1,---,p, and p is the smallest positive integer such that
this is true.

Proof: The proof is constructive and given in the form
of algorithms that synthesize small-amplitude, low-frequency,
continuous, sinusoidal controls. Without loss of generality we
assume that X(0) = X; = 1 € ¢ and Xy EQNQCGis
such that g¢ = (gg,.--- ‘.‘an]'r =¥YX;) = O(elP~V) and
Zp = Y0 zp, A = $7Y(X4) = O(e®-1), By Lemma 2
[[zf —g5ll = O(2(p—1)). Therefore, for the order of accuracy
of control that we seek, gy and zy can be used interchangeably.

The algorithms are designed to solve the problem X(7)
(ty) = X by solving g®)(ts) = g; or equivalently Z()(¢)
= Zy. Multiple substeps are used. That is, the time interval
[0,25] is divided into subintervals, e.g., [0,t5] = [to, 1) U
[tr t2) U Ultu1,t,), to = 0, t, = tg, and controls
specified on each subinterval. Because as assumed above,
gy = O(e®=Y) and z; = O(¢®-1)), we can ensure that
the “‘initial condition’’ for each subinterval, e.g., g(to), g(1),
g(tz), etc., will be O(e®P~V), ie., will satisfy the initial
condition requirement for the averaging theorems. Thus, the
appropriate averaging theorem can be applied to successive
subintervals. Our controls will be specified so that the terms
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Uay, Areay;(T), and m;;(T) will take on a single constant
value on each subinterval. These terms may take on different
values on different subintervals. Thus, for ease of notation
we define the ‘‘running total”” of the time-varying area terms
and moment terms as Area;;(f) and m;;(t), respectively.
Let Area( (T) and mf:,)‘(T) be the values of the area and
moment lerms respectively, during the time interval [#,_;.¢,]
and suppose that t € [£,,t,41]. 0 € v < p. Then define

Areay;(t) = z f‘“—_;r_—”r\reag;)('r)

r=1

Y - i e, (50)
- “’r T ) r
mUk z 1 53:?(71)
=1
t—6)
+% mi (D). s1)
Case i)p=2: Let
ct) = {C|C=ArorC=[A;,Aj], i,5,k=1,--+,m}.

The definition of a depth-one bracket system implies G =
span C(1), ie.,

m m
G= {ch#‘ik + 2 Cg_j[A;,AJ-], Ck, Cij € .YR}

k=1 ij=1
m m n
= {E crAg + Z Cij ZF;A;‘., Ck, Cij € 3?}
k=1 GLi=li<i k=1
Therefore, since 3, _, gseAx € G, there exist ck,c;; € R,
% Jo ke -, m such that
n m m
ng“i* = Z(‘kA" + Z Z ("'JFUA* (52)
k=1 k=1 k=1i.j=1a<j
By Theorem 3

m
E etig(t

£=1

+Z Z ———-’&rea.u(T)I"kAk (53)

k=1:ij=la<y

20(2] A

Thus, to find controls that produce §®(t5) = g5, we equate
(52) and (53) and match coefficients. That is, we choose

u(t), t € [0,t7], k= 1,---,m such that
elig(ty)=cr, k=1l.---,m (54)
and
EAreaii(ty) = cij, 4,j=1.--,m, i<j (55)
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Then g®)(t;) = g7 so that X(¢;) = ¥(g@(t5)) = U(gy)
= X,. Thus, by Theorem 3, d(X(t;),X;) = d(X(t;),

X)) = 0(€).

Algorithm 1 below computes ux(t), t € [0,t5], k =
1,-+-,m such that (54)55) are met. This is done by rec-
ognizing the geometric meaning of the terms Area;;(T), i.e.,
that Area;;(T) is the area bounded by the closed curve
described by ; and %; over one period. In particular, if
we choose #; and #; to be sinusoids that are in phase,
then Area;;(T') = 0. Alternatively, if they are chosen out
of phase, then Area;;(T) # 0 is a function of the signal
magnitudes and phase difference. Based on this reasoning,
the final values of each of these terms can be matched
independently, i.e., (54)~(55) can be met. The timing can
be controlled by choosing the frequency and amplitudes of
the sinusoids appropriately. In Appendix B we define two
algorithm components. The first, Component 1-i) steers iy,
k = 1,---,m to satisfy (54) with no net change to any
Area;;(t) term. The second, Component 1-ii) steers area terms
Area,;(t), 7, 7,1 < j to satisfy (55) with no net change to . In
each component the controls have an initial and final value of
zero. The algorithm components are like computer subroutines
that are defined once and for all and called as necessary.

Algorithm [

Compute ¢, ¢;; as follows such that (52) holds. Consider
the matrix shown at the bottom of the page. Note that T
has rank n — m. Define the generalized inverse of T" to be

't = I7(TTT)~1. Then let
¢
rl2 9f mi1
o =T
C{m—1)m 9fn
m
Ck:gfk— 2 r:.-J-]"i-‘j-. k:1,-~.m,
1,7=1li<y

S={k|ey; #0, some j >k},

r = |S| £ number of elements in S.

Choose M to be a positive integer such that M > 1/we. Let
the period T" and frequency w of the controls be
_ ty _2m
TrM+n+12 YT T
Then using the controls defined in Components 1-i) and 1-ii),
perform the following iterations:
1):i=0,
3) Ifi &S gotos).

m+1 m+1
r Yy
m+2
~ A rlQ
[ —
Fo

Y, Iy

m+41 me1
T ol [‘2

1+1 +1
F;m R ]'!(mm 1)m
Fr?"i b Fgm btk r?m —1)m
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4) Apply Component 1-ii) for ¢;;, j =t + 1,---.m
5) Ifi <m-—1goto?2).
6) Apply Component 1-i) for ex, k= 1,---,m

Then we are done and d(X (ts), X) = O(€?) as desired.
Case ii) p = 3: Let

C® = {C|C =4, 0 C=[A;4), or

C": [[A"'AJ'LAi'-]'Jqsi‘j!k = 13"'|m}-

The definition of a depth-two bracket system implies that
G = span C¥ | ie.,

g= {ECQAQ + Z f‘..'j'[A".,AjI

g=1 i,3=1

+ Z (:.-J;k{[A,'._Aj]fAk]. Cqs Cijs Cijk € ER}

i k=1
{ZCQAQ+Z( Z e T35
1,7=1;1<]

et
+Z Z c‘*',f"g?jk)AQ}

k=11,7=1:1<3

{i'"qA "'Z i

1 q=11,7=lii<j

(C,JF +c._,.9,},

+ Z c;jkﬂfjk) Aq}

k=i+1

where the ¢;;) in the last line are a redefinition taking into
account the relations among 67 ;1 induced by the Jacobi identity
(17). Therefore, since Z; € G, there exist ¢g, cij, cijk € R,
such that

m

Zy= Z e Ay

=1

n Ly
+Z Z (F‘JF + Ciji m+ Z c,;kﬂuk)

g=lig=1:;<j =1+1
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By Theorem 5 and Remark 6

ZO)(t) = ie&q(t}flq
q=1
12 X
g=14,j=1i<j

m 3
= Z %(27}’3‘-}';@{?’) - m,-kj{T))EJ?}-k) Aq. (57)

k=i+1

(Ezﬂij Or; -2 tmm (T8

Thus, to find controls that produce Z(*)(t5) = Z, we equate
(56) and (57) and match coefficients. That is, we choose

ug(t),t € [0,t5],9 = 1,---,m such that
eitg(tf) =cq. g=1,---,m, (58)
eza,-)-(t!) =¢jj, Li=1l-,
m, i< j, (59)
Emiilty) = —cijiy, Gi=1000,

m, 1<j (60)

€ (2mijn(ts) — mini(ts)) = —cije, 44 k=1,--,
m, 1< j, k. (61)
Then X®(t;) = $(Z3(ts)) = ¥(Zy) = x, and so by

Theorem 5, d(X(."!) X!) = d(X(t), X®)(t5)) = O(®).

Algorithm 2 below computes ug(t), t € [0, tel,g =
1,-+-,m such that (58)-(61) are met. This is done by
recognizing the meaning of the geometric terms as in Case i).
In particular, the terms m;(T) and mr;(T), i < j < k, can
be controlled using sinusoids with 1-2 resonance. In Appendix
B we define Component 2-ii) which addresses (59) and (60)
and Component 2-iii) which addresses (61).

Algorithm 2
Let
E:{EE{m—k[,---,n}IFfJ-;éﬂsome
isj € {lvﬂ‘]’}'t {‘j}‘

Define 0 < Il < (n — m) by [ = |=| = number of elements in
=. We will assume for the purposes of the algorithm, without
loss of generality, that the basis {A4;,---,A,} is chosen and

(62)

(56) ordered such that {A;,---, A4} is a basis for A + [A, A],
+1+1 +i+1 +141 +1+1 +l+1 m4l41
em 8?‘52 B;’;m B;Hmm 8;?32 g(m 1)mm
9m+f+2 gm-H-i—?
P 5 121 122
L '9?2] ;‘22 E?m—l)mm
+1 1 +1 +1 m+1 +1
T?; r,lj."!+ me F;; F?m anm 1)m
F;r;+2 :
r
T+l m4l +1 m+l +1 +f
_r b r 3+ l—‘rlnm F23 1-'1;:" T‘?:n-—l)m
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where A = span{A;,---,A,,}. Compute cg,c;j,cijr such
that (56) holds as follows. Consider matrices ¢ and I" as shown
at the bottom of the previous page. Let a £ 4 1. Then 6 has
rank n — o and T' has rank {. Define the generalized inverse
of # to be 61 = 6T(9AT)1. Let

i1
€122 zfm-—l-—-l
: =0t
Z
Clm—1)mm In

Define the generalized inverse of T' to be I't = T7(I'T'7)~1.

Then let
€12
13 "
Clm=—1)m
(, ) Zm ( ___Em+1+zm ci gm+1)
Zfma1 ~ Luig=1;i<j\Ciji%;5i k=i+1 CijkVijk
rt :
m -m+f m Logm+l
Zfmal ):;ng,j:mq(ﬁijiei_ﬁ + Ek:.-i-,};ﬂl C:‘Jks.‘jk
- T g7 . g7
Cq=2f,— Z ei;T7; + cijill;; + z Cukgs_,-k
ij=lji<j k=i4+1
qg= l‘m

Y = {eije | cije #0,i < j,i < k},
Q={cyre¥|i<j<k}

A = |@Q| = number of elements in Q,
R:{Cf,—'kEYfk:f'.}U{c,-jk€V|k:=jandc,-j‘-g}_’}‘
V= {cij | eij #0.i < j}
W= {c;jk eR | Cij & fr"} 5= |W' + I‘;rl

Choose M to be a positive integer such that M > 1/me. Let
the period T and frequency w of the controls be

tr Lo

I'= , :
(63 +38) (M + 1)+ 1/2° T

Then use the controls defined in Components 1-i), 2-ii), and
2-iii) of Appendix B to perform the following iterations:

1) i = 0.
2)i=i+41,j=i
) j=i+1 k=]

4y k=k+1LIfk=m+1 goto8).

5) If Cijk = Cikj = 0 go to 7).

6) Apply Component 2-iii} for ¢;jr and cixj.

7y If k< m-=1gotod).

8y If Cij = Ciji = Cij5 = 0 go to 10).

9) Apply Component 2-ii) for ¢;;, ¢;;; and c;jj;.

10) If j < m — 1 go to 3).

11) If i < m -1 go to 2).

12) Apply Component 1-i) for ¢, for g = 1,---,m.

Then we are done, and J(X(r.;)._ Xy) = O(e*) as desired.
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The proof is completed by noting that for 0 < p’ < p and
p = 2,3, the p'th-order average solution X (") captures system
behavior that includes only up to (p’ — 1) Lie brackets. Thus,
for a depth-(p — 1) bracket system, p = 2,3, X ®") cannot be
controlled as desired. a

The arguments of this section are reminiscent of [1], where
Brockett works with piecewise constant controls.

V. EXAMPLES

Consider the autonomous underwater vehicle motion control
problem described in Section I. The Wei-Norman equations
for SE(3) with our chosen basis for se(3) are

91 secgacosgs —secgasings 0 0 0 0
g2 sin gs COS ga 0 0 0 0
g3 | _ |—tangecosgs tangpsings I 60 0
g1 0 —g6 g 1 00
g5 g6 0 -g4 0 1 0
g6 =95 94 0 0 01

Uy

ug

Uy
X € s (63)

Us

Ug

The parameters gi. g2, g3 correspond to Euler-angle type pa-
rameters and parameterize the orientation of the vehicle. The
parameters g4, g5, g parameterize the position of the vehicle.

AUV with Four Controls: First, suppose that we can con-
trol all components of angular velocity as well as one trans-
lational velocity component, i.e., {A;, A2, A3, A3} describes
our control authority. Then, X (¢) describes the orientation and
position of the vehicle and satisfies

4

X =eX (Z u,-(t)A;-)

i=1

(64)

where {A;,---, Ag} is the basis for se(3) defined by (7). This
system is a depth-one bracket system since [A3, A3] = Aj
and [A4,Ay] = Ag. We have n = 6, m = 4, and the
nonzero structure constants corresponding to our chosen basis
for se(3) can easily be computed as T'}, = '}, = '}, = 1,
Mfs =T§ =1, Tg,=T3=1T3 =T§ =1

Following Algorithm 1, we compute

rl? P]B I‘M l-"23 r24 F34

_fooo0oo0 0o 1
o000 -10
0000 o 17
“loooo -1 0"

Therefore

ol 1 i (i R

c12 = c13 = €14 = c23 = 0,

C1 =41~ (?24ré,| . CIMF%A =9f1
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02 v
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02 A i A ;
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Fig. 1. Control input signals for AUV example with four controls.

C2 = gfq — 2Ty — 934P§4 =0fq:
€3 =gfg— 62.41"34 = r:ul‘ii =gfq
ca = gy — 2T — 34134 = 914

§={2,3}, r=2
So we choose an integer M > 1/7e and
ﬁf 2
P G o,
M+ +1/2 “TT

Then we apply Component 1-ii) for ¢o4 followed by Compo-
nent 1-ii) for c34 followed by Component 1-i) for ¢1, ¢z, ¢3, ¢4.
To reduce the time and energy expended by the controls,
we can instead apply Component 1-ii) just once. To do this
let i =4, j = 2,3, cap = —c24, 43 = —c34 and apply
Component 1-ii) to match c42 and c43. In this case we have
S = {4} and r = 1 so we recompute
o t f _ 27
Y=MiIp T T

For numerical illustration, let ¢ = 0.1, gy, = 0.1, i =
l,---,6,and t; = 23. Choose M = 10, then T’ = 2, w = .
Fig. 1 shows plots of the corresponding controls eu,, eus,
€ug, €uq as a function of time. Fig. 2 shows a simulation of
the response of the Wei-Norman parameters g as a function
of time. The simulation was produced by numerically solving
(63) using MATLAB. The horizontal dashed lines of Fig. 2
represent the desired final parameter value g¢. Fig. 2 shows
that g(t) — g5 = O(¢?) and equivalently Z(ts) — Z; = O(¢?)
as expected. By the results of Lazard and Tits (see Section II)
for G = se(3) we can let 5 = {A € se(3) | [|A]|; < 7/2}
for any p. From Fig. 2 it is clear that Z; € S and Z(t5) € S
for some choice of p. Thus, || Z(¢f) — Z¢|| = O(c?) implies
d(X(tf), X5) = O(e?), i.e., the AUV has been repositioned
and reoriented as desired with O(¢?) accuracy.

AUV with Three Controls: Now consider the case when
there are only three controls available, e.g., suppose that due
to an actuator failure, the third component of angular velocity
can no longer be directly actuated. We can use our algorithms
to adapt on-line by computing new controls based on the
new relevant structure constants. Our new control authority
is defined by {4y, A2, A4} and X (t) € SE(3) satisfies

X = eX(ug Ay + up Ao + ugAy)

(65)
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—
0.1 { 0.1 0.1
= 0.05 ’ T 005 !WWWW 2 005
0 | 0 0
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] w0 20 [} 10 20 0 10 20
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0.1 i 0.1 [ﬂ" 0.1
% 005 ‘% 005 r/ S 005
0 0 0
05! .005'—-—-———— =0
008 10 20 1] 10 20 % 0 20

Fig. 2. Response of AUV with four controls.

which is a depth-two bracket system since [A;, As] = Aj,
[A4, As] = Ag, and [[A, Ao], A4] = Aj. For the purposes of
the algorithm, we reorder our basis for se(3) such that 43 &
Ay and A; < Ag. The nonzero structure constants associated
with this reordered basis become T'{, = I'}; = T% = 1,
I3: =T% = 1,13, =T =1, T% = T2 = 1. Further,
#%,; = 1. Thus, n = 6, m = 3, and so by (62), = = {4,5}
and [ = || = 2. Thus, we get

8=
[3(1521 9?22 9?23 9?31 9?32 3?33 f3331 3332 93331
=0 01000 -1 0 0]
T‘:[Piz Ty FM:[I 0 0]
Iy Ty T3 00 -1
C123 = Zfg.

€121 = €122 = C231 = Cg32 = C233 = C131 = C1ap = c133 = 0.

Note that z;, is based on the original ordering of the basis
for se(3) and so it is the coefficient of Ag in the reordered
basis. Further

EIF ekl
cas| |0 —1]|zp5— 123003 | — |—zs6 )’
Cia = 0.
€1 =25~ {clﬂl—‘}ﬁ + "’23Fé3 + 0’12391}23) = Zf1
€2 = zf, — (1272, + 23725 + c1230%93) = Zfgs
c3 = 2f, — (1295 + 2333 + c123653) = 25,

Y= {0123}5 Q = {0123}! f? = ﬁﬁ V = {cl2tc23}|
W=8 p=1, v=2
So we choose an integer M > 1/7e and
iy 2T
P i 22
M+ +120 “TT7T

Then we apply Component 2-iii) for ¢;23, followed by Com-
ponent 2-ii) for cy9, followed by Component 2-ii) for cag,
followed by Component 2-i) for ¢, ¢z, ¢3. These components
will specify controls wu;, 1o and wu3. ug is really our original
control w4 since it is the coefficient of the original A,.
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Fig. 3. Control input signals for AUV example with three controls.
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Fig. 4. Response of AUV with three controls.

For this particular system we note that the execution of
the algorithm is longer than necessary, i.e., there are steps
which have zero net effect on the system. Thus, to save time
and energy we eliminate the unnecessary steps of the control
algorithm defined above. The total time duration of the parts
left out is 9(M + 1)T so we recompute

f,! _ 2T
T=sm+n+i2 “~ T

For numerical illustration, let ¢ = 0.2,4; = 37 and g7, =
0.05,97, = 0.05, g5, = 0.04, g, = 0.06, g5, = 0.05, 955 =
0.05 (recalling from Lemma 2 that for the algorithm that we
can set zy = g¢). Choose M = 5, then 7' = 2, w = 7. Fig. 3
shows plots of the corresponding controls €u;, €us, and euy as
a function of time. Fig. 4 shows a simulation of the response
of the Wei—Norman parameters g as a function of time. The
horizontal dashed lines of Fig. 4 represent the desired final
parameter values g;. Fig. 4 shows that g(t;) — g5 = O(¢?)
as expected. We conclude that the AUV has been repositioned
and reoriented as desired with O(¢*) accuracy.

Reorientation with only roll and pitch actuators was demon-
strated experimentally using this algorithm on an underwater
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vehicle in the neutral buoyancy facility of the Space Systems
Laboratory at the University of Maryland. For details, see [17].

VI. CoNCLUSION

We have derived average formulas for the solution to (2)
and used them to specify small-amplitude periodic controls
that solve the complete constructive controllability problem
P) approximately (exactly if the system is nilpotent). We have
shown that the smallest order of the average formula sufficient
to solve P) is one more than the number of Lie bracket
iterations needed for the system to satisfy the Lie algebra
controllability rank condition. The results were developed for
the pth-order average approximation where p = 2, 3; however,
the general pth-order average theorem is stated in Appendix A.
The proof of the controllability result is constructive and was
given in the form of algorithms for generating open-loop con-
trols. Structure constants, which define the control authority of
the system, drive the algorithms. A change in control authority
such as an actuator failure may be described by a change in
structure constants and, thus, can be accommodated on-line
using the algorithms. One might consider the algorithms of
this paper to be a “motion script” generator. Thus, a change
in structure results in a change in script.

Averaging theory for systems on Lie groups also holds
promise for understanding and controlling systems with drift.
That is, while the algorithms derived in this paper are valid
only for drift-free systems of the form (2), the averaging
theory here does not rely on the drift-free assumption. We
have already applied our averaging theory on Lie groups to the
problem of controlling a class of switched electrical networks
which can be modeled as systems on Lie groups with drift [19].

APPENDIX A

In this appendix we state the general pth-order averaging
theorem and constructive controllability theorem. The proofs
can be found in [16]. The theorems make use of the following
recursive formula given by Fomenko and Chakon [7] for
the terms in the infinite series expression for Z(t) where
X(t) = 549, )

Theorem 8 (Fomenko and Chakon): Let § = b/M, where
M > 1 is a constant such that ||[4, B]|| < M||A||||B].
VA,B € G and b is a universal constant. Suppose that U(t)
is a piecewise continuous curve in G and fc: |leU(r)||dr < 6.
Then Z(t) = Y32, €'Z;(t) is a convergent series. The terms
Z;(t) are uniquely defined by

am=nm=£wﬂm
(i+1)Ziga(D) =T + Z: {%[Zm Tis]

+ Y ky E

qz1.2qsr h\m,:r.m))ﬂ
i=

% [P 1Bz Wi s o]
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Tk(t)=[) [U(ﬂ)sfnﬂ [U(Ta)-“"
,/.nn U(Tf,+1)d1‘k+1j| dTJ{I 7 ] dTl. {66)

We note that each term Z; is composed of depth-(z — 1)
brackets.

Theorem 9 (pth-Order Averaging: Area-Moment Rule):
Consider system (2) on the Lie group G with Lie algebra G.
Assume that U(¢) is a piecewise continuous, bounded curve in
G. Let b > 0 be such that [ ||U(r)||dr < 6Vt € [0,b], where
& is as defined in Theorem 8. Further, assume that U(t) is
periodic in ¢ of period 7', V¢ € [0,00). Let p > 1 be an integer.

For p > 1 assume that 7%.(T) = 0, k = 0,--+,p — 2, where
Ti(t) is defined by (66). Suppose that X (0) = X € Q C G is
such that Zg = U~ 1(Xg) = O(e? ') if p > 1 and Zy = O(e)
if p = 1. Define
p-1
Z0() = Y (-1)EZ(0) + (-1 P Z(T) + 2,
i=l
(67)
_X(P)(t) — eztﬂ(ﬂ (68)

where Z;(t) are defined by (66). If || Zo — Z"|| = O(e?) and
ZW(t) € S, ¥t € [0,b/e], then

d(X(t), XP)(t)) = O(e?),Vt € [0,b/e). (69)
Further, for t = NT, N an integer
ZO(NT) = (~1)PH e NZ,(T) + ZP. (70)

Remark 10: Further explicit decomposition of Z'») into
terms like areas and structure constants can be found in [16]
imitating the argument for Z*) in (43) and Z™ in (49).

Theorem 11: Suppose that system (2) on the connected Lie
group G with Lie algebra G is a depth-p’ bracket system. Let
p = p' + 1. Then the complete constructive controllability
problem P) can be solved with O(e?) accuracy using the
formulas X (7)(1) given by (68) for r = 1,---,p. Further,
p is the minimum positive integer such that thls is true.

APPENDIX B

In this appendix, we present the components used in the
algorithms of this paper. The sinusoidal controls are typically
suboptimal. Given the chosen sinusoidal structure of the
controls, however, the amplitudes are selected to minimize
energy (integral of sum of squares of inputs). In the following
control laws, if a control component is not explicitly prescribed
it should be set equal to zero.

Component 1-i)

Given: cp, k= 1,---,m, T, w and current time t;.

Goal: Let t; =ty + T/2. We define euy(t), k=1,---,m,

t € [to.t1], continuous, such that eiix(t)) = e and eug(t;)

= cur(to) =

Controls:

1
cur(t) = Eckwsin{w(t —to)), o<t <y,

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 9, SEPTEMBER 1995

Component 1-ii)

Given: ¢;j, foriand j =i+1,---
time tg.

Goal: Let t, = 19 + (M + 1)T. Let

g \U4
= ( > ﬂzifz) :

j=it+1

,m, T, w, M and current

Specify continuous, zero-mean controls w;(t), u;(t), j = i+
1,--+,m, t € [tp, t1] such that e?Area;;(t;) = e;;, eui(to)
= eu;(t)) = eu;(to) = en;(t;) = 0.

Controls:

eu;(t) = aywsin(w(t — to
€U (f) =10

i(t) = o (w(t = s1)) =
) o) <t < mt MT =

D}fuﬂtétu-{-%:ﬁh

3 s
Note that €?Area;j(t;) = aja;mM = ¢;;, and the goal is
met.
Component 2-ii)
Given: 1 < j, ¢ij, Cijis Cijj, T, w, M and current time .
Goal: Let t1 = tg + 3(M + I)T and
)1;5

1/6 av
c 32¢7, 32¢7,
ai) = [ 75fy @2 = (‘T“"z,, i ) y Qg = (;ﬁj&

. = _Cid L e L 2y
0y A Qi = a;zmM? Qjg = agTM’

Specify continuous, zero-mean controls u;(t) and u;(t), t €
[to,t1], such that €*Area;;(t;) = cij, Emyji(t) = —ciji,
Esm,-j_?-(h) = —tijj and fu,-(tl) = Eﬂi(tg) = E’t-'.j(tl) =

euj(tg) = 0.

Controls:
eu;(t) = (!uw sin{w(t — tn))

i< =

euj(t) = = 30+ i
eu;(t) = ﬂs‘lums(u (t—s1)) ~
eu;(t) = a;,wsin(w(t — 51)) [ STSS s1+MT =5,
eu;(t) = ajywcos(w(t — 53)) 3T
eu;(t) =0 5 + T= s3

eu;(t) = ajowsin(w(f — s3)) T _
€u;(t) = 20;,wsin(w(t — s3)) saStset i
eui(t) = aipweos(w(t — s4))
euj(t) = 20w cos(2w(t — s4))

eui(t) = ajpw cos(w(t — s;5)) } . < 85 + T
NJEEEERTE

}34$i£.94 +MT=35

€u;j(t) = 20;,w cos(w(t — s5 St<ss 1 = 8q
eu;(t) = 20 wsin(w(t — s6)) . T
eu;(t) = aiywsin(w(t — sg)) eSt<se+ =97

eui(t) = 20w cos(2w(t — s7))

cu;(t) = oiqw cos(w(t — s7)) }37 StSor+MT =2

eui(t) = 20w cos(w(t — sg))

T
eu;(t) = ajzw cos(w(t — ss)) }SB SETEde+ S
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The condition on Area,;(t) is met during the time interval (2] —, “Control theory and singular Riemannian geometry,” in New
[0, .‘?3], the condition on ml‘ji(tJ is met during [33‘ SB]v and the ;);m;:;f;; in Applied Mathematics. New York: Springer-Verlag, 1982,
condition on mfﬂ(t) is met during [33' 39]' [31 i k "d'n the rectification of vibratory motion,” Sensors and Actua-

Component 2-iii) tors, vol. 20, no. 1-2, pp. 91-96, 1989.

[41 “Formal language for motion description and map making,” in

Given: i < j <k, ¢ijk, cixj» T, w, M and current time . Proc. Symposia Applied Math., R. W. Brockett, Ed. Providence, RI:

Goa! Let t; = o + b(M + l)T Let d; = 2|(3c‘,;c + American Mathematical Society, vol. 41, 1990, pp. 181-193.

- ¢ Select [5] J.-M. Coron, “Global asymptotic stabilization for controllable systems
r"kj )/7M and dy = 2( ik + (‘"'” )/mM. without drift,” Math. Contr., Signals Syst., vol. 5, no. 3, pp. 295-312,
1992,
(f:h ) 1/3 ( dy )1!2 dy [6] M. L. Curtis, Matrix Groups, 2nd ed. New York: Springer-Verlag,
o [ gy =2 . Pry = , 1984.
Pi1 6 H i1 ! Pi1Pgy [7] A. T. Fomenko and R. V. Chakon, “Recursion relations for homoge-
1/3 neous terms of a convergent series of the logarithm of a multiplicative
_ E.Z. _ 3‘2_ == dy integral on Lie groups,” Funcational Analysis and its Applications, vol.

Pig = 6 s Pig = 0 T PR2 = PisPi ' 24, no. 1, pp. 48-58, Jan.—Mar., translated from Russian, 1990,

22 12 [8] L. Gurvits, “Averaging approach to nonholonomic motion planning,”
i . in Proc. IEEE Int. Conf. Robot. Automar., Nice, France, 1992, pp.

We specify continuous, zero-mean controls u;(t), u;(t) and 2541-2546.
TIk(f ¢ G [1’0 tII such that Es(zm.ﬁjk(f-l) = mm}(f ) e [9] L. Gurvits and Z. X. Li, Smooﬂ'l time-pen'odic feedback so]utipn for
2 t) (t1) = —cinsr €wi(ty) = nonholonomic motion planning,” holl Motion P & A
—Cijk: [ m"’"J(' = Mkl = Colesly €A = Li and J. F. Canny, Eds. New Yurk Kluwer Academic, 1993 PP

eui(to) = eu;(ty) = euj(ty) = eur(ty) = eur(ty) = 0. 53-108. .

Further, Areau(f,lj = Arﬂaik(tl} = Arcaik(tl) =} [10] V. Jurdjevic and H. J. Sussmann, “Control systems on Lie groups,” J.

C Is- Differential Equations, vol. 12, pp. 313-329, 1972.

onirols: [11] M. V. Karasev and M. V. Mosolova, “Infinite products and T products
; of exponentials,” Th ical and Mat} ical Physics, vol. 28, pp.
ew;(t) = piwsin(w(t — tq)) T 721-729, translated from Russian, 1976.
2 sin to<t<t _ =3 [12] P. S. Krishnaprasad and R. Yang, “Geometric phases, anholonomy,
:: (( t}] Pi f‘%m[ﬁ:(g ¢ H}P 0StSth+ 4 ! and optimal movement,” in Proc. IEEE Int. Conf. Robot. Automat.,
k = Sacramento, CA, 1991, pp. 2185-2189,
- o [13] P.S. Krishnaprasad, R. Yang, and W. P. Dayawansa, “Control problems
i f) P ol 4o 2 )} << MT = on principal bundles and nonholonomic mechanics,” in Proc. 30th IEEE
euj(t) = 2pj weos(2w(t — 51)) ps1 <t < s+ = 82 Conf. Decis. Contr., Brighton, UK, 1991, pp. 1133-1138.
eug(t) = prwcos(w(t — 51)) [14] G. Lafferriere and H. J. Sussmann, “Motion planning for controllable
systems without drift: A preliminary report,” Rutgers Center for Systems
cui(t) = piyw cos(w(t — s2)) 3T and Control, Report SYCON-91-4, June 1990.
euj(t) = 2pj weos(w(t — s2)) psa <t < sp+ i 83. [15] M. Lazard and 1. Tits, “Domaines d’injectivité de 1'application expo-
P _ k nentielle,” Topology, vol. 4, pp. 315-322, 1966.
”"k“} - ﬂklucnﬁ[u{t 32)) [16] N. E. Leonard, “Averaging and motion control of systems on Lie
groups,” Ph.D. dissertation, Univ. Maryland, College Park, MD,
The condition on m;jx(t) is met during the time interval 1994, -
- [17] , "Control synthesis and adaptation for an underactuated au-
[0. 53)- Th.e Valiics of mu,(.l).a!.'l(.i ) M(f).at =2y, however, tonomous underwater vehicle,” IEEE J. Oceanic Eng., vol. 20, no. 3,
may be different from their initial condition. pp. 211-220, 1995.

So repeat the controls above replacing o with s3, sy with  [18] N. E. Leonard and P. S. Krishnaprasad, “Averaging for attitude control
84, 89 with sg, and sy with sg. Also, replace p;, by —p;, and ;nrﬂo::ﬁu%le;ngﬁp “; Ozgilgind IEEE Conf. Decis. Contr., San
set eug(t) = 0,t € [s3, sg]. During [s3, s¢], the original value |19 , “Control of switched electrical networks using averaging on Lie
of mjji(t) is restored. Repeat the controls above again, this groups,” in Proc. 33rd IEEE Conf. Decis. Contr., Orlando, FL, 1994,
% L % . 4 o . k pp. 19191924,
time replacing fo with s, 51 with s7, s2 with sg, and 53 with [20] W. Liu, “Averaging theorems for highly oscillatory differential equations
s9. Also, replace p;, by —p;, and set eu;(1) = 0,1 € [s, s9). and the approximation of general paths by admissible trajectories
Then, during [gﬁ, g"] the original value of ‘m_-;kkfﬁ) is restored. for nonholonomic systems,” Ph.D. dissertation, Rutgers Univ., New

Brunswick, NJ, Oct. 1992,

Finally, rerun the entire set of controls for ¢ € [tD‘Sg]‘ [21] W. Magnus, “On the exponential solution of differential equations for a

exchanging the roles of j and k, augmenting the indexes of linear operator,” Commun. Pure Applied Math.. vol. VII, pp. 649-673,

the time intervals appropriately. Also, replace p;, by pis. p; 1954.

b and b i The: s pand :)3 (121: ] fola.' ;)3_1 [22] R. M. Murray and 8. S. Sastry, “Steering nonholonomic systems using
Y Pjas Pk BY f;*‘-z- k=318 ijk\t1 sinusoids,” in Proc. 29th IEEE Conf. Decis. Conr.. Honolulu, HI, 1990,

mir; (1)) = —cijr. € (2mig;(t) — mije(t1)) = —cix;- Thus, pp. 2097-2101.

the goal is met. [23] —, “Nonholonomic motion planning: Steering using sinusoids,”

IEEE Trans. Awtomar. Conir., vol. 38, no. 5, pp. 700-716, 1993.
[24] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control

Systems. New York: Springer-Verlag, 1990.
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