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Nonholonomic Motion Planning: 
Steering Using Sinusoids 

Richard M. Murray, Member, IEEE, and S. Shankar Sastry, SeniorMember, IEEE 

Abstract--In this paper, we investigate methods for steering 
systems with nonholonomic constraints between arbitrary con- 
figurations. Early work by Brockett derives the optimal controls 
for a set of canonical systems in which the tangent space to the 
configuration manifold is spanned by the input vector fields and 
their first order Lie brackets. Using Brockett’s result as motiva- 
tion, we derive suboptimal trajectories for systems which are not 
in canonical form and consider systems in which it takes more 
than one level of bracketing to achieve controllability. These 
trajectories use sinusoids at integrally related frequencies to 
achieve motion at a given bracketing level. We define a class of 
systems which can be steered using sinusoids (chained systems) 
and give conditions under which a class of two-input systems 
can be converted into this form. 

I. INTRODUCTION 
OTION planning for robots has a rich history. The M traditional difficulty in planning robot trajectories 

is the avoidance of obstacles, often referred to as the 
piano mover’s problem, in which we attempt to move an 
object (the piano) through a cluttered environment. This 
problem is solved by investigating the free configuration 
space of the piano-all configurations for which the piano 
does not intersect an obstacle. If the start and goal 
locations of the piano lie in the same connected compo- 
nent of the free configuration space, the motion planning 
problem is solvable. 

In recent years, there has been a great deal of activity 
in the generation of efficient motion planning algorithms 
for robots. Most of this work has concentrated on the 
global problem of determining a path when the obstacle 
positions are known and dynamic constraints on the robot 
are not considered. This has resulted in a rather complete 
understanding of the complexity of the computational 
effort required to plan the trajectories of robots to avoid 
both fixed and moving obstacles [lo], [22], [281. Other 
approaches include the use of potential functions for 
navigating in cluttered environments [24], [25] and compli- 
ant motion planning for navigating in the presence of 
uncertainty [131, [141, [371. 

Our interests in motion planning are not along the lines 
of the aforementioned approaches, but are complemen- 
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tary: they involve motion planning in the presence of 
nonholonomic or nonintegrable constraints. That is, we 
consider systems in which there are constraints on the 
velocities of the robots which cannot be integrated to give 
constraints which are exclusively a function of the config- 
uration variables. These situations arise in a number of 
different ways and we describe a few of the sources of 
their origin: 

1) Mobile Robots Navigating in a Cluttered Environment: 
The kinematics of the drive mechanisms of robot carts 
results in constraints on the instantaneous velocities that 
can be achieved. For instance, a cart with two forward 
drive wheels and two back wheels cannot move sideways. 
This was first pointed out by Laumond in the context of 
motion planning for the Hilare mobile robot 1291, [301. 

2) Multifngered Hands Manipulating a Grasped Object: 
If an object is twirled through a cyclic motion that returns 
the object to its initial position and orientation, and the 
fingers roll without slipping on the surface of the object, 
the fingers do not necessarily return to their initial con- 
figurations. This feature can be used to plan the regrasp 
of a poorly grasped object or to choose the nature of this 
grasp. This application of nonholonomic motion planning 
was first pointed out by Li [341, [351 (see also [391). 

3) Space Robotics: Unanchored robots in space are 
difficult to control with either thrusters or internal motors 
since they conserve total angular momentum. This is a 
nonintegrable constraint. The motion of astronauts on 
space walks is of this ilk, so that planning a strategy to 
reorient an astronaut is a nonholonomic motion planning 
problem [55]. Other examples of this effect include gym- 
nasts and springboard divers. 

Nonholonomic constraints arise either from the nature 
of the controls that can be physically applied to 
the system or from conservation laws which apply to the 
system. Conventional path planners implicitly assume that 
arbitrary motion in the configuration space is allowed as 
long as obstacles are avoided. If a system contains 
nonholonomic constraints, many of these path planners 
cannot be directly applied. If we attempt to ignore the 
constraint, the paths generated by a path planner may 
not be feasible (see Fig. 1). For this reason, it is important 
to understand how to efficiently compute paths for 
nonholonomic systems. 

To be more specific, we are interested in mechanical 
systems with linear velocity constraints of the form 

w i ( x ) i  = 0 i = l,..., k .  (1) 
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Fig. 1. Paths generated by conventional path planners may ignore 
nonholonomic constraints. The straight line path in the figure indicates 
the path that a conventional path planner might generate. The curved 
path is one which satisfies the nonholonomic constraints on the car's 
motion. 

Here, x E R" is the configuration of the system being 
controlled and q ( x )  is a row vector in R". These are 
constraints on the velocities of the system. In some cases, 
the constraints may be explicitly integrable, giving con- 
straints of the form 

h i ( x )  = ci 

for some constant ci. If this is possible, motion of the 
system is restricted to a level surface of hi. Such a 
constraint is said to be holonomic. By choosing coordi- 
nates for the surface, configuration space methods can be 
applied. In the instance that there is only one constraint 
on the velocity of the system, its integrability may be 
determined by checking the symmetry of the Jacobian 
matrix of ol(x). There is no easy extension of this charac- 
terization to the case of multiple constraints. 

A constraint is said to be nonholonomic if it cannot be 
written as an algebraic constraint in the configuration 
space. There are many types of nonholonomic constraints, 
corresponding to different physical situations. 

It will be convenient for us to convert problems with 
nonholonomic constraints into steering problems for con- 
trol systems. Consider the problem of constructing a path 
x ( t )  E R" between a given xo  and x1 subject to the k 
constraints given in equation (1). We assume the mi's are 
smooth and linearly independent. Specific examples of 
such systems are given in Section 11. Roughly speaking, we 
would like to convert the constraint specification from 
describing the directions in which the system cannot move 
to those in which it can. Formally, we choose a basis for 
the right null space of the constraints, denoted by g i ( x )  E 

R", i = l,..., n - k.  The path planning problem can be 
restated as finding an input function, u(t)  E I W n P k ,  such 
that the control system 

i = g,(x)u,  + ..* + g n - k ( x ) U n - k  

is driven from x,, to xl. It can be shown that if the wi7s 
are smooth and linearly independent, then the gi's inherit 
these properties. 

The outline of this paper is as follows: in Section 11, we 
collect some mathematical preliminaries from the liter- 
ature on controllability of nonlinear systems and on clas- 
sification of free Lie algebras. These are drawn from 
classical references in control theory [71, [201, [211, [411, 
[49] and Lie algebras [181, [53]. In Section 111, using some 
outstanding results of Brockett on optimal steering of 
certain classes of systems as motivation [6], we discuss the 
use of sinusoidal inputs for steering systems of first order, 
i.e., systems where controllability is achieved after just 
one level of Lie brackets of the input vector fields. Section 
IV attempts to expand the domain of applicability of these 
results to more complex systems, where several orders of 
Lie brackets are needed to obtain the full Lie algebra 
associated with the input distribution. The style of the 
paper is self-contained so as to make it accessible to both 
robotics and control researchers and several examples are 
sustained through the paper. 

A target problem which we set ourselves at the start of 
this research was that of parking of a car with N trailers. 
This problem remains unsolved and indeed has generated 
some fascinating new ideas in the field. It is not a "toy 
problem" since efforts are underway to automate baggage 
handling by carts with multiple trailers in airports (not to 
mention trucks with multiple trailers). It is fair to say that 
the study of nonholonomic motion planning is in its 
infancy. There have, however, been notable contributions 
by Laumond et al. [231, [29], [31]-[33] and by Barraquand 
and Latombe [2] on motion planning for mobile robots in 
a cluttered field. While this work represents important 
initial progress, we feel that less computationally intensive 
and more insightful approaches are possible by conduct- 
ing a systematic research program on motion planning of 
dynamical systems with nonholonomic constraints. We are 
joined by several complementary efforts, notably those of 
Li and co-workers [15], 2351 and Sussmann and co-workers 
[27], [ S I .  We have also applied the techniques of this 
paper to steering of space robots using sinusoids in [551. 

11. MATHEMATICAL PRELIMINARIES 

This section describes the notation to be used through- 
out the paper and collects a variety of results from nonlin- 
ear control theory and Lie algebras which will be used in 
the sequel. For basic definitions and concepts in differen- 
tial geometry, see Boothby [5] or Spivak [48]. A good 
introduction to nonlinear control theory which includes 
many of the necessary differential geometric concepts can 
be found in Isidori [21] or Nijmeijer and van der Schaft 
M11. 

A. Nonlinear Control Theory 

We consider the problem of steering a control system 

c: i = g,(x)u,  + * * -  +g,(x)u, x E U c R" 

U E R" (2) 
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from an initial state xo E U to a final state x1 E U by 
appropriate choice of a control U: [O,T] + R". For sim- 
plicity, we assume U to be an open neighborhood of the 
origin and {g i }  to be a collection of smooth, linearly 
independent vector fields defined on U. Associated with 
the system 8 is a distribution 

A = span {g,,..., g,l 

where we take the span over the set of smooth real-valued 
functions on U. A, c R" denotes the subspace defined by 
evaluating A at a point x. 

Controllability of the system I: can be characterized in 
terms of the Lie algebra generated by the vector fields g i .  
Define the Lie bracket between two vector fields f, g as 

A straightforward calculation shows that the Lie 
has the following properties: 

[ f , g l  = - [g , f l  (skew-symmetry) 

[ f , [ g , h l l +  [ g , [ h , f l l +  [h , [ f ,g l l  

= o  (Jacobi identity). 

Given a distribution A, the involutive closure 

bracket 

of the 
distribution, denoted x, is the closure of A under Lie 
bracketing. 

A system 8 is controllable if for any x o ,  x1 E U there 
exists a T > 0 and U: [0, TI + R" such that I: satisfies 
x(0) = x o  and x ( T )  =xl. For a control system which is 
linear in the input, the time interval T is arbitrary since 
we can scale the inputs (and hence time) as needed. The 
conditions for controllability are given by Chow's theorem 
(see [20]). 

Theorem I (Chow): If x, = R" for all x E U then the 
system 8 is controllable on U. 

A useful interpretation of Chow's theorem can be 
obtained by using the following characterization of the 
Lie bracket. Let 4[: U + R" denote the flow of a vector 
field f for time t and consider the sequence of flows 
depicted in Fig. 2. The net motion consists of flowing 
along g,,g,, -gl, -g, for time E and can be shown to 
satisfy 

4;gzo 4;glo @ 2 0  4,gl<x0> = E 2 [ g , ,  g21(x0) + o ( E ~ > .  
(3) 

Thus, the Lie bracket is the infinitesimal motion that 
results from flowing around a square defined by two 
tangent vectors. If [gl,g,l = 0 then g, and g, commute 
and it can be shown that the right-hand side of (3) is 
identically zero; i.e., we return to the starting point. 
Roughly speaking, Chow's theorem states that if we 
can move in every direction using Lie bracket motions 
(possibly of higher order than one), then the system is 
controllable. 

A 

nonzero 
net motion & 

/ Eg2 

Fig. 2. A Lie bracket motion. 

B. Classification of Lie Algebras 
We now develop some concepts which allow us to 

classify nonholonomic systems. A more complete treat- 
ment can be found in the work of Vershik [ 161, [54]. Basic 
facts concerning Lie algebras are taken from Varadarajan 
[531. Let A = span{g,;..,g,} be the distribution associ- 
ated with the control system (2). Define G, = A and 

Gi = Gi-, + [Gl,Gi-,1 
where 

[G,,Gi-,1 = span{[g,hl: g E G,,h  E Gi-l) .  

The set of all Gi's defines the filtration associated with a 
distribution. Each Gi is defined to be spanned by the 
input vector fields plus the vector fields formed by taking 
up to i - 1 Lie brackets. The Jacobi identity implies 
[Gi, GjI C [GI, Gi+j- 1 1  C Gi+j. 

A filtration is regular in a neighborhood U of xo if 

rank G i b )  = rank Gi(xo) Vx E U. 

We say a system is regular if the corresponding filtration 
is regular. If a filtration is regular, then at each step of its 
construction, Gi either gains dimension or the construc- 
tion terminates. If rank Gi+ , = rank Gi then Gi is involu- 
tive and hence Gi+j = Gi for all j 2 0. Clearly, rank Gi I 
n and hence if a filtration is regular, then there exists an 
integer p < n such that G, = Gp for all i 2 p. We refer to 
p as the degree of nonholonomy of the distribution. 

For a regular system, Chow's theorem states that a path 
exists between two arbitrary points in an open set U c R" 
if and only if G,,(x) = R" for all x E U. A system (or 
distribution) satisfying the conditions of this theorem is 
said to be maximally nonholonomic. If a regular system is 
not maximally nonholonomic, then by Frobenius' theorem 
we can restrict ourselves to a manifold on which the 
system is maximally nonholonomic. 

It is also useful to record the dimension of each Gi. For 
a regular system, we define the growth vector r E ZP as 

ri = rank Gi. 

We define the relative growth vector U E ZP as ai = ri - 
r i - ,  and ro := 0. The growth vector for a system is a 
convenient way to represent information about the associ- 
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ated control Lie algebra. For a distribution with finite 
rank, the growth vector is bounded from above at each 
step. To properly determine this bound, we must deter- 
mine the maximal rank of Gi taking into account skew- 
symmetry and the Jacobi identity. A careful calculation 
[46] gives 

where ai is the maximum relative growth at the ith stage 
and j l i  means all integers j such that j divides i .  If 
ui = ai for all i ,  we say A has maximum growth. 

C. Examples of Nonholonomic Systems 
To illustrate the classification of nonholonomic systems, 

we present are 
used in later sections as a basis for testing planning 

Fig. 3. A simple hopping robot. The robot consists of a leg which can 
both rotate and extend. The configuration of the mechanism is given by 
the angle of the body and the angle and length (extension) of the leg. 

These 

algorithms. 
Example I (Hopping Robot): As our first example, we 

consider the dynamics of a hopping robot in flight phase 
[36], as shown in Fig. 3. This robot consists of a body 
with an actuated leg that can rotate and extend; the 
“constraint” on the system is conservation of angular 
momentum. 

Let (9 ,  I, 8) be the body angle, leg extension, and leg 
angle of the robot. For simplicity, we take the body mass 
to be one and concentrate the mass of the leg, m,,  at the 
foot. The upper leg length is also taken to be one, with 1 
representing the extension of the leg past this point. Since 
we control the leg angle and extension directly, we choose 
their velocities as our inputs. The angular momentum of 
the robot is given by 

Example 2 (Enematic Car): Consider a simple kine- 
matic model for an automobile with front and rear tires 
[40], as shown in Fig. 4. The rear tires are aligned with 
the car while the front tires are allowed to spin about the 
vertical axes. To simplify the derivation, we model 
the front and rear pairs of wheels as single wheels at the 
midpoints of the axles. The constraints on the system arise 
by allowing the wheels to roll and spin, but not slip. 

Let (x, y ,  +,e) denote the configuration of the car, 
parameterized by the location of the rear wheel(s), the 
angle of the car body with respect to the horizontal (e), 
and the steering angle with respect to the car body (4). 
The constraints for the front and rear wheels are formed 
by writing the sideways velocity of the wheels: 

e + m,(l + 112( e + 4) = 0. d 
- ( x  + 1 cos 8 ) .  sin(8 + 4) 

- - ( y  + 1 sin e)  cos(8 + 4) = 0 

i sin 8 - y cos 8 = 0. 

Thus, our equations become dt 
d 

* = U ,  

1 = U2 

dt 

Written as one forms we have 

w1 = s i n ( 8 + 4 ) d x - c o s ( 8 + 4 ) d y - l c o s + d O  

w2 = sin 8dx - cos 8dy .  

Converting this to a control system gives 

i = COS eu, 

y = sin Bu, 

4 = U 2  

. 1  
8 = - tan +U,. 

1 

In a neighborhood of 1 = 0,{g,,g2,g3} is full rank and 
hence the hopping robot has degree of nonholonomy 2 
with growth vector (2,3). 

For this choice of vector fields, U, corresponds to the 
forward velocity of the rear wheels of the car and u2 
corresponds to the velocity of the steering wheel. 
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Y 

' 5  

Fig. 4. Kinematic model of an automobile. The configuration of the car 
is determined by the Cartesian location of the back wheels, the angle the 
car makes with the horizontal and the steering wheel angle relative to 
the car body. The two inputs are the velocity of the rear wheels and the 
steering velocity. 

To calculate the growth vector, we compute the control 
Lie algebra: 

d d l  d 
g, = cos 8- + sin 8- + - tan 4- 

d X  dY 1 de 

Fig. 5. Kinematic car with trailers. The trailer configuration is described 
the angle the trailer makes with the horizontal, 0,. The rear wheels of 
the trailer are fixed and constrained to move along the line in which they 
point or rotate about their center. The inputs to the system are the 
inputs to the tow car: the driving velocity (of the front wheels) and the 
steering velocity. 

trailer is pointing and its perpendicular. The perpendicu- 
lar component causes the trailer to spin. Letting vi- ,  be 
the forward velocity of the previous trailer, we have 

. 1  ei = - sin(8,-, - e i ) V i - ,  
4 

vi = cos(e i - ,  - ei)vi-,. 
d 

g2 = 3 Aggregating these equations gives 

-1 d 
g3 = [g,,g,I = -- i C O S ~  4 de 

{g,, g,, g,, g4} are linearly independent when 4 .fL * ~ / 2 .  
Thus, the system has degree of nonholonomy 3 with 
growth vector r = (2,3,4) and relative growth vector U = 

(2,1,1). The system is regular away from 4 = f ~ / 2 ,  
where g, is undefined. 

Example 3 (Car with N Trailers): Fig. 5 shows a car with 
N trailers attached. We attach the hitch of each trailer to 
the center of the rear axle of the previous trailer. The 
wheels of the individual trailers are aligned with the body 
of the trailer. The constraints are again based on allowing 
the wheels only to roll and spin, but not slip. The dimen- 
sion of the state space is 4 + N with 2 controls. 

We parameterize the configuration by the states of the 
automobile plus the angles of each of the trailers with 
respect to the horizontal. For consistency we will write 8, 
for the angle of the car. Calculation of the constraints 
becomes tedious since we have to write the velocity of the 
wheels of each trailer, which depend on all previous 
trailers. Instead. we choose to use the same inmts as the 

i = COS e,u, 

4 = u2 

y = sin B,u, 

1 
. I  

8, = - tan 4 u l  
1 

cos(ej-, - ej)  sin(8,-, - e&,. 1 e+ 1 i - 1  

di  j = 1  

The filtration corresponding to the N trailer problem is 
very complex. For small values of N ,  controllability can be 
verified directly. For the general case, a very detailed and 
well-organized calculation by Laumond [31] shows that 
the system is controllable with degree of nonholonomy 
N + 3 and relative growth vector U = (2, l,..., 11.' 
D. Philip Hall Bases for Lie Algebras 

We will be interested in the sequel in constructing 
nonholonomic systems which are canonical in the sense 
that they allow for the maximal growth of the filtration 
associated with a set of vector fields A = span {g,, . . . ,  g,}. 

To construct such systems with a given number of 
inputs and degree of nonholonomy, it is necessary to 
introduce some additional machinery. In constructing 
canonical nonholonomic systems we must observe the 

automobile and calculate the effect on the trailer angles. 

sum of two components: the velocity in the direction the 

'Laumond uses a slightly different system, obtained by ignoring Q, and 

steer I$ independently, controllability for the system given here follows 
from Laumond's result. 

At each trailer, we can write the hitch velocity as the choosing U1 and U1 tan '$ as inputs. s i n e  Setting U1 = 0 a l h s  us to 
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fundamental restrictions imposed by the Lie bracket: 
skew-symmetry and the Jacobi identity. Our search for a 
set of vector fields which have a given degree of non- 
holonomy is equivalent to searching for a basis for a free, 
finitely generated, finite-dimensional Lie algebra. One 
basis set for such a distribution is a Philip Hall basis [18, 
461. 

Given a set of generators { X l , - * - ,  X,), a Lie product is 
any nested set of Lie brackets written in terms of the Xi's. 
The length of a Lie product is defined recursively as 

where A and B are themselves Lie products. Altema- 
tively, l ( A )  is the number of generators in the expansion 
for A. A Lie algebra is nilpotent if there exists an integer 
k such that all Lie products of length greater than k are 
zero. k is called the order of nilpotency. A nilpotent Lie 
algebra is finite dimensional. A P. Hall Basis is an ordered 
set of Lie products H = {BJ satisfying 

PH1) Xi E H ,  i = l , . - . , m  
PH2) If l (Bi)  < l (Bj )  then Bi < Bj 
PH3) [ Bi, B j ]  E H if and only if 

a) Bi, Bj E H and Bi < Bj and 
b) either Bj = X ,  for some k or 

Bj = [B, ,  B,] with B,, B, E H and B, I Bi. 
The proof that a P. Hall basis is a basis for the free Lie 
algebra generated by { X , , . . . , X , }  can be found in [18], 
[46]. The construction above is a clever way of keeping 
track of the conditions imposed by the skew-symmetry 
and the Jacobi identity. 

A P. Hall basis with order of nilpotency k can be 
constructed from a set of generators using the definition. 
The simplest approach is to construct all possible Lie 
products with length less than k and use the definition to 
eliminate elements which fail to satisfy one of the proper- 
ties. In practice, the basis can be built in such a way that 
only PH3) need be checked. 

Example 4: A basis for the nilpotent Lie algebra of 
order 3 generated by { X ,  Y,  Z )  is 

generators: 
Bl - B 2 :  X Y 

B,: [ X , Y I  
B4 - 4:  [ X ,  [ X , Y I l  [ Y ,  [ X , Y I l  
B, - B * :  [ X , [ X , [ X , Y I I I  [Y,[x,[x,YIII 

[ Y ,  [ Y ,  [ X ,  y111 

[ Y ,  [ X ,  [ X ,  [ X ,  ~ 1 1 1 1  
[ Y ,  [ Y ,  [ X ,  [X,Y1111 
[ Y ,  [ Y ,  [ Y ,  [ X ,  Yl111 
[ [ X ,  Y l ,  [ X ,  [ X ,  Y l l l  
[[X, YI,  [ Y ,  [ X ,  Y l l l .  

B,  - B 1 4 :  [ ~ ~ ~ x ~ [ x ~ [ x ~ y ~ ~ ~ ~  

Note that B13 and B,, have the form [B, ,  B4] and [B, ,  B,], 
requiring careful checking of the condition PH3). 

111. STEERING CONTROLLABLE SYSTEMS USING 
SINUSOIDS 

In this section, we investigate methods for steering 
systems with nonholonomic constraints between arbitrary 
configurations. Early work by Brockett derives the optimal 
controls for a set of canonical systems in which the 
tangent space to the configuration manifold is spanned by 
the input vector fields and their (first order) Lie brackets. 
Using Brockett's result as motivation, we derive subopti- 
mal trajectories for systems which are not in canonical 
form and consider systems in which it takes more than 
one level of bracketing to achieve controllability. These 
trajectories use sinusoids at integrally related frequencies 
to achieve motion at a given bracketing level. Examples 
and simulation results are presented. 

We consider systems of the form 

f = g , ( x ) u ,  + +g,(x)u, x E R", U E R" ( 6 )  

with {g i )  a set of smooth, linearly independent vector 
fields in some neighborhood of the origin. We also assume 
that the system is regular (as defined in Section 11-B) and 
hence has a well-defined degree of nonholonomy and 
growth vector. 

A. First-Order Systems 
Control systems in which the first level of brackets X Y Z  

together with the input vector fields span the tangent 
[ X , Y l  [ X , Z I  [ Y , Z I  space at each configuration arise in many areas. In classi- 

cal mechanics, systems with growth vector r = ( n  - 1, n )  
[X, [X, Yl1 [ X ,  [ X ,  Zl l  [ Y ,  [ X ,  Yl1 [ Y ,  [ X ,  Z ] ]  are called contact structures [ l ] .  A version of the Darboux 

theorem asserts that for these systems the corresponding 
[ y ,  [ Y ,  Zl l  [z, [x , y l ]  [ Z ,  [ X ,  Zl l  12, [ Y ,  Z l l .  constraint can be written as 

c t x 3  = ~ 2 c t x 1  
Note that [ X ,  [ Y ,  Zll does not appear since 

(using the notation of exterior differential forms). In R3 
and using control system form, this becomes 

1x7 [ Y ,  Zl l  + [ Y ,  [ Z ,  XI1 + [ Z ,  [ X ,  Yll = 0 

and two of the three terms are already present. 
Example 5: A larger example, which we will use in the 

sequel, is a basis for a Lie algebra of order 5 with 2 

f l  = u1 
f, = u2 

x3 = x 2 u 1  

(7) 
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Brockett considered a more general version of this 
system in [6]; we review his results here. Consider a 
control system as in (6) that is maximally nonholonomic 
with growth vector ( m ,  n) = ( m ,  ( m ( m  + 1)/2)) ,  We 
would like to find an input u(t)  on the interval 0 to 1 
which steers the system between an arbitrary initial and 
final configuration and minimizes 

~ ‘ I u l 2  dt .  

This problem is related to finding the geodesics associated 
with a singular Riemannian metric (Camot-Caratheodory 
metric). To solve the problem, Brockett considers a class 
of systems which have a special canonical form. An equiv- 
alent form, which is more useful for our purposes, is 

x .  1 1  = U .  i = 1,... , m  

x . .  = X . U .  I i >.i. (8) 

We see that if m = 2, this is exactly the contact system 
(7). It can be shown that the input vector fields and their 
pairwise brackets span R” and hence the system is con- 
trollable with degree of nonholonomy equal to 2. 

To find the optimal input between two points, we con- 
struct the Lagrangian 

m 

L(x ,X)  = xi: + x A i j ( i i j  - x i x j ) .  (9) 
i =  1 i , i  

Here we have used the fact that uj  = x j .  The hij’s are the 
Lagrangian multipliers associated with the constraint 
imposed by the control system. Substituting (9) into the 
Euler-Lagrange equation 

d JL  aL = o  
dt J i  d x  

it can be shown that the input must satisfy 

U = eAtuO 

where A is a constant skew-symmetric matrix. Thus, the 
inputs are sinusoids at various frequencies. Unfortunately, 
even for very simple problems, determining A and uo 
given an initial and final configuration is very difficult. 

A great deal of simplification occurs if we consider 
moving between configurations where x i ( l )  = xi(0). In 
this instance the eigenvalues of A must be multiples of 21r 
and Brockett showed that the optimal inputs are sinu- 
soids at integrally related frequencies, namely 27r, 2 . 
27r,-**, ( m / 2 )  2 7 ~ .  This simplifies the problem tremen- 
dously and for many examples reduces the search to that 
of finding uo.  We use this result to propose the following 
algorithm for steering systems of this type: 

Algorithm I: (Steering first-order canonical systems): 

1) Steer the xi’s to their desired values using any 
input and ignoring the evolution of xij7s.  

2) Using sinusoids at integrally related frequencies, 
find uo such that the input steers the xi j ’ s  to their 

desired values. For example, choosing 

U i  = (a ik  sin kt + bik COS kt)  
k > O  

yields 

a jkb ik  - ‘ ikb jk  

k 

By the choice of input, the xi’s are unchanged. 

The resulting trajectories are suboptimal but easily 
computable and have several nice properties which we will 
explore. 

Example 6: We consider as an example a kinematic 
hopping robot, as shown in Fig. 3. This example has been 
studied by Li, Montgomery, and Raibert [36] using holon- 
omy methods. We wish to reorient the body of robot while 
in midair and bring the leg rotation and extension to a 
desired final value. The kinematic equations of the robot 
(in center of mass coordinates) can be written as 

* = U 1  

where we have used units such that the mass of the body 
is one and the length of the leg at zero extension is also 
one. The last equation is a consequence of conservation 
of angular momentum. Expanding the equation using a 
Taylor series about 1 = 0: 

This suggests a change of coordinates, a = 8 + 
(m,/l + m , ) @  to put the equations in the form 

1 = U 2  

This equation has the same form locally as the canonical 
system in (8). 

Using this as justification, we attempt to use our pro- 
posed algorithm to steer the full nonlinear system. Since 
we control the @ and 1 states directly, we first steer them 
to their desired values. Then using sinusoids in the I) and 
1 inputs, 

u1 = a, sin w t  

u2 = a2 cos wt 

we steer 8 to its desired value. By construction, this last 
motion does not affect the final values of @ and 1. To 
include the effect of nonlinearity in the first vector field, 
harmonic analysis can be used. Since 1 is periodic, we 
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expand f(1) using its Fourier series 

1 a2 f(; sin wt = P, sin wt + p2 sin2wt + - 0 . .  

Integrating d! over one period, only the first term in the 
expansion contributes to the net motion 

o 

I 

w I Fig. 6. Nonholonomic motion for a hopping robot. Using sinusoidal 
inputs, the leg angle and extension return to their starting values but the 
body angle goes a net rotation. Tal P1 

= a(0)  + - 
w 2  . 

Fig. 6 shows the trajectory for the last motion segment; 
+b and 1 return to their initial values but a (and hence 8) 
experiences a net change. To compute the required input 
amplitudes, we plot P1 as a function of a2 and choose 
a2 such that (ma, P l ( a 2 ) / w 2 )  = - 8,. For example, 
choosing m ,  = 5, a,  = a2 = 1,  and w = 1 yields 

w 2 P / 0  
p1 = -1 

T O  
f(: sin u t )  sin wtdt = -0.468. 

The net motion in a (and hence 8) is ( r a 1  P1/w2)  = 
- 1.47, which agrees with the simulated motion. 

To incorporate practical considerations, such as limited 
leg extension and rotation, multiple cycles may be used to 
achieve a large body rotation. 

B. Second-Order Systems 
We next consider systems in which the first level of 

bracketing is not enough to span R”. We begin by trying 
to extend the previous canonical form to the next higher 
level of bracketing. Consider a system which can be 
expressed as 

, m  i = 1,... f l  = U, 

f,, =x ,u ,  i > j 
f l J k  = xlJuk (mod Jacobi identity). (10) 

Because Jacobi’s identity imposes relations between cer- 
tain brackets, not all xlJk  combinations are permissible if 
the system (10) is to be completely controllable. This is 
analogous to limiting the x,,~’s according to 

Using the calculation in (4)  shows that a system with 
two levels of growth has relative growth vector ( m ,  
( m ( m  - 1)/2) , ( (m + l ) m ( m  - 1)/3)). Constructing the 
Lagrangian (with the same integral cost function) and 
substituting into the Euler-Lagrange equations does not 
in general result in a constant set of Lagrange multipliers, 
although Brockett and Dai have shown that for m = 2 the 
optimal inputs are elliptic functions [9]. 

We can extend and apply our previous algorithm as 
follows. 

Algorithm 2: (Steering second-order canonical systems). 

1 )  Steer the xi’s to their desired values. This causes 
drift in all other states. 

2) Steer the xi,’s to their desired values using inte- 
grally related sinusoidal inputs. If the ith input has fre- 
quency wi then x i ,  will have frequency components at 
wi f wj. By choosing inputs such that we get frequency 
components at zero, we can generate motion in the desired 
states. 

3) Use sinusoidal inputs a second time to move all 
previously steered states in a closed loop and generate 
motion only in the x i jk  directions. This requires careful 
choice of the input frequencies so that wi f w, # 0 but 
wi f wj f wk has zero frequency components. 

The required calculations for Step 2) are identical to 
those in Algorithm 1 .  A general calculation of the motion 
in Step 3)  is quite cumbersome, although for specific 
systems of practical interest the calculations are straight- 
forward. For example, if m = 2, (13) becomes: 

f, = u1 
1, = u2 

f21 =x2u1  

1 2 1 1  = x21u1 

f212 = x21u2. 

To steer xl, x 2 ,  and x2, to their desired states, we apply 
Algorithm 1. To steer xZll independently of the other 
states, choose u1 = a sin t ,  u2 = b cos 2t to obtain 

a2b 
8 x2,,(27r) = x211(0) + - 2.rr 

Similarly, choosing u1 = b cos 2t and u2 = a sin t gives 

azb  
8 

X2,,(2T) =x,,,(O) + - *2.rr 

and all other states return to their original values. Note 
that this approach requires separate steps to steer in each 
of the xi jk  directions. It is also possible to generate net 
motion in multiple coordinates simultaneously by using 
linear combinations of sinusoids and solving a polynomial 
equation for the necessary coefficients. 

Example 7: To illustrate the algorithm, we consider the 
motion of a front wheel drive car as shown in Fig. 4. The 
kinematics of this mechanism were derived in the last 
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chapter and can be written as 

.i = COS eu, 

y = sin 8ul 
fjJ = u2 (11) 

1 
1 

8 = - tan +ul.  

In this form, u1 does not control any state directly. We 
use a change of coordinates and a change of input to put 
the equations in the form 

1 = v1 v1 = cos 8u1 

4 = v2 v2 = u2 

a = sin 8 
1 
1 

c i  = - tan 4vl 
a 

y =  d z  
As before, the linear portion of the nonlinearities matches 
the canonical system and we can include the effects of the 
nonlinearities using Fourier series techniques. 

An example of the algorithm applied to the car is given 
in Fig. 7. The first portion of the path, labeled A, drives 
the x and 4 states to their desired values using a constant 
input. The second portion, labeled B, uses a periodic 
input to drive 8 while bringing the other two states back 
to their desired values. The last step brings y to its 
desired value and returns the other three states to their 
correct values. The Lissajous figures that are obtained 
from the phase portraits of the different variables are 
quite instructive. Consider the portion of the curve labeled 
C. The upper left plot contains the Lissajous figure for 
x ,  4 (two loops); the lower left plot is the corresponding 
figure for x ,  8 (one loop) and the open curve in x ,  y shows 
the increment in the y variable. The very powerful impli- 
cation here is that the Lie bracket directions correspond 
to rectification of harmonic periodic motions of the driv- 
ing vector fields and the harmonic relations are determined 
by the order of the Lie bracket corresponding to the 
desired direction of motion. This point has also been 
made rather elegantly by Brockett [8] in the context of the 
rectification of mechanical motion. 

Iv. CHAINED SYSTEMS 

We now study more general examples of nonholonomic 
systems and investigate the use of sinusoids for steering 
such systems. As in the previous section, we try to gener- 
ate canonical classes of higher order systems, i.e., systems 
where more than one level of Lie brackets is needed to 
span the tangent space to the configuration space. We 
show that, in full generality, it is difficult to use sinusoids 
to steer such systems. This leads us to specialize to a 
smaller class of higher order systems, which we refer to as 
chained systems, that can be steered using sinusoids. We 
give sufficient conditions under which systems can be 

- Phi 

- 6 4 - 2 0 2 4 6  4 -4 -2 0 2 4 6 
I 

2 - The? 

0. I 

40 

n. I 

4 . 2  

o'6 E, , , , , I 0 .6  

A B C 
I 

43.3 F , , , ,  1 , , , 1 , , , 1 , , , 1 , , , 1  , , , ,  I 
4 4 . 2 0 2 4 6  

Fig. 7. Sample trajectories for a car. The trajectory shown is a three 
stage path which moves the unicycle from x = -5, y = 1, 0 = 0.05, 
C#J = 1 to (0,0.5,0,0). The first three figures show the states versus x ;  the 
bottom right figures show the inputs as functions of time. 

transformed into a chained form and show the procedure 
applied to several illustrative examples. 

A. Maximum Growth Canonical Systems 
Using a P. Hall basis, it is possible to construct vector 

fields which have maximum growth; at each level of brack- 
eting the dimension of the filtration grows by the maximum 
possible amount. More specifically, we wish to construct a 
set of vector fields {Xi} such that when the vector fields 
are substituted into the expressions for the P. Hall basis 
elements, the resulting set of vector fields is linearly 
independent. The method of construction used here is 
due to Grayson and Grossmann [17]; similar results can 
be found in the work of Sussmann [50]. We present only 
the 2-input case. 

Given a P. Hall basis element B = [B i ,  Bj], we convert 
B into a canonical form by recursively expanding Bj: 

(12) 

Any element of a P. Hall basis has a unique representa- 
tion in this form. Thus, we can associate with each such 
basis element a well-defined vector a E B" which indi- 
cates the number of times each basis element occurs in 
the expansion (12); i.e., ai (k)  is the number of times B, 
appears in the expansion for Bi. From the properties of a 
P. Hall basis, it is clear that a i (k )  = 0 if k 2 i. 

Given a P. Hall basis H = {B1,..., B,} we now construct 
a vector field on R" using coordinates x E R". Assume 
Bi = X i  for i = l,..-,m. Given ai associated with Bi, 
i > m, we define 

i 
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Theorem 2 (Maximal Growth 2 Input Systems [17]): Fix 
k 2 1 and let n be the rank of the free, nilpotent Lie 
algebra of order k with two generators. Then 

nents in the derivatives fo the dynamic system: 

x6: w1 k w2 3 0 ,  & w2 

d d " xai d x = -  x2=-+ E - -  
a x ,  d x ,  i = 3  ai! axi  

corresponds to a vector field obtained by taking the 
derivative of the components of X ,  with respect to 
x i l ,  x i 2 , - - . ,  xi,. The coefficients of X ,  are chosen such that 
taking this derivative leaves 1 in the ( d / d x i )  term. 

Example 8: Consider the two input example given previ- 
ously, but with order of nilpotency 4 instead of 5. The 
system generated by Theorem 2 is 

f, = u1 X 
f, = U, Y 

I, = x 1 u 2  [ X ,  Yl 

f4 = -.?U2 

f5 = X l X , U ,  

f6 = -x:u, 

1 
2 [X, [ X ,  YJJ 

[Y, [ X ,  Yll  

[X, [ X ,  [X,Y111 

[Y, [ X ,  [ X , Y l I l  

[Y, [Y, [ X ,  Ylll .  

1 

6 
1 

i 7  = ,.:.,U, 

f, = 2 x 1 x ; u 2  
1 

x 7 :  w ,  2 w ,  2 w 2  2 w ,  k 2w, 

X g :  W 2  W1 f U 2  W1 f 3W2. 

generate a free, nilpotent Lie algebra (of vector fields) of BY choosing frequencies that the derivative has a 
term at frequency 0, we get motion in that coordinate. 

gives motion in '8 

order k at the origin. 

sions of the canonical forms we have seen for degree of 
nonholonomy and 3. The degree of nonholonomy for 

nilpotency.2 One way to interpret and gain insight into 
this formula is to note that a Lie product 

The vector fields generated by this theorem are exten- Thus = 3wl gives motion in '6 and = 3 w Z  

Based on these calculations, it would appear that choos- 

the case, but we also get motion in the x 3  direction. It is 
not possible to get motion only in the x7  direction using 
simple sinusoids. A direct calculation verifies that adjust- 
ing the phasing of the inputs does not resolve this dilemma. 
It may still be possible to steer the system using combina- 
tions of sinusoids at different frequencies for each input 
or using more complicated periodic functions (such as 
elliptic functions, see [91). 

B. Chained Systems 
Rather than explore the use of more complicated inputs 

for steering nonholonomic systems, we consider instead a 
simpler class of systems. The justification for changing the 
class of systems is simple-most of the systems encoun- 
tered as examples do not have the complicated structure 
of our canonical example. Thus there may be a simpler 
class of systems which is both steerable using simple 
sinusoids and representative of systems in which we are 
interested. 

these vector fields is always one greater than the order of ing 2 w I  = 2 w 2  give motion in '7. is, in 

Consider a two input system of the following form: 

io = U, 

f l  =you,  ( Y l  := XOU, )  

Y o  = U 2  

We can now ask ourselves if it is possible to steer these 
canonical systems using sinusoids. Although the form of 
the system is different from that we used in Section 111-B, 
the same approach can be used to steer x ,  through x5 .  
That is, sinusoids at the same frequency and proper phase 
give motion in x 3  and sinusoids at frequency 1 and 2 give 
motion in x4 and x5  (switching the input frequency 
switches between x4 and x5).  This can be verified by 
direct calculation. 

Steering in the x6 - x8  directions is more difficult. 
Consider the effect of using two simple sinusoids as 
inputs, u1 = acos wlt and U, = bsin w,t.  In order to 
prevent motion in lower level brackets, we must have 
w1 # + w 2 ,  w1 # +2w,, w2 # +2w,. Assuming these 
relationships hold, we get the following frequency compo- 

f2 =xlul Y 2  = Y l U 2  

f3 = x 2 u 1  Y 3  = y , u ,  
(: 13) 

- 
fnx = x n r -  1'1 Y n y  - Y n , - 1 ' 2 .  

The equation for 3, is contained in parenthesis to indi- 
cate that y ,  is not an independent variable. In fact, 
choosing 

Y ,  := X O Y O  - x 1  

gives the indicated value for the derivative of y,. In vector 
field form, (13) becomes 

d d "  d x= - + y o -  + E X i - ,  - 
d x ,  d x ,  i = 2  d X i  

Y = - +  E y j - , - .  
 YO j = 2  dYj 

( y " )  =xu, + Yu, d "  d 

'This discrepancy is due to the original definition of degree of non- We refer to the system (13) as a two-chain system* The 
first item is to check the controllability of these systems. holonomy given in [16], to which we have adhered. 



710 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 5, MAY 1993 

To this end, denote iterated Lie products as ad:Y 

ad,Y= [X,Yl 

ad: Y = [X,adk,-' Y] 

= [ X ,  [ x,..., [ x, Y] * - *  I]. 

Lemma 3 (Lie Bracket Calculations): For the vector 
fields in (13) 

d 
adk,Y= ( - l ) k -  

adk ,X=( -1 )  - 

d x k  
k >  1 .  

k d  

'yk 

Proofi By induction. Since the first level of brackets 
is irregular, we begin by expanding [X, Y I and [X, [X, Y 11. 

d "1 d X i  
[ X , Y l =  - +yo- + &-, ( d:o d x ,  

d d 
[ X , [ X , Y ] ] = X  -- +- (X)=O+- .  i d:, 1 d x ,  dx2 

Now assume that ad$Y = (- l )k(d/dxk) .  Then 

d k adk,+'Y= [X,adk,Y] = (-1) X - - -(XI ( ( d : k )  d x k  ) 

The proof for adk,X is identical using the facts [Y, XI = 

0 
Proposition 4 (Controllability of the Two-Chain System): 

The two-chain system (13) is maximally nonholonomic 
(controllable). 

Proofi There are n,  + ny + 1 coordinates in (13) and 
the n,  + ny + 1 Lie products 

-[X,Y] and y ,  := xoyo - xl. 

{X,Y,adiY,ad&X) 1 I i I n, ,  2 I j I ny 

are independent using Lemma 3. We require j 2 2 since 
ad,X = -ad,Y and hence those Lie products can never 

To steer this system, we use sinusoids at integrally 
related frequencies. Roughly speaking, if we use U, = sin t 
and u2 = cos kt then i ,  will have components at fre- 
quency k - 1 ,  i ,  at frequency k - 2, etc. i k  will have a 

be independent. 0 

component at frequency zero and when integrated we get 
motion in xk while all previous variables return to their 
starting values. In the y variables, all frequency compo- 
nents will be of the form m * k * 1 and hence we get no 
motion for k > 1. We make this precise with the following 
algorithm. 

Algorithm 3: 
1) Steer xo  and yo  to their desired values. 
2) For each x k ,  k 2 1, steer xk to its final value 

using U, = a sin t ,  u2 = b cos kt, where a and b satisfy 

3)  For each y, ,  k 2 2, steer yk to its final value using 
u1 = b cos kt, u2 = a sin t ,  where a and b satisfy 

Proposition 5: Algorithm 3 can steer (13) to an arbitrary 
configuration. 

Proofi The proof is constructive. It suffices to con- 
sider only step 2) since step 3) can be proved by switching 
x and y in what follows. We must show two things: 

1) moving xk does not affect xi, j < k 
2) moving x k  does not affect y j ,  j = l,..., n y .  

To verify that using U, = a sin t ,  u2 = b cos kt produces 
motion only in x k ,  we integrate the x states. If X k - 1  has 
terms at frequency wi,  then xk has corresponding terms at 
wi f 1 (by expanding products of sinusoids as sums of 
sinusoids). Since the only way to have ~ ~ ( 2 7 7 )  # xi(0)  is to 
have x i  have a component at frequency zero, it suffices to 
keep track only of the lowest frequency component in 
each variable; higher components will integrate to zero. 
Direct computation starting from the origin yields 

xo  = a(l  - c o s t )  
ab 1 ab 

x ,  = / sin kt sin t = - sin(k - l ) t  
2 k ( k  - 1 )  

1 ab 
2 k ( k  + 1) 

+ -  sin(k + l ) t  

1 a2b 
sin(k - 2)t + x2  = - 

4 k ( k  - l ) ( k  - 2)  

akb t 
' k = / ( ? . . i i ; ;  ) 2k-'k! 2 

sin2 t + ... dt = - - + ... akb 

x k ( 2 a )  = xk(0) + ((a/2)kb/k!)77 and all earlier xi's are 
periodic and hence xi(27r) = xi(0),  i < k. If the system 
does not start at the origin, the initial conditions generate 
extra terms of the form xi- ,(0)u2 in the ith derivative and 
this integrates to zero, giving no net contribution. 

To show that we get no motion in the y variables, we 
show that all frequency components in the y's have the 
form mk f 1 where m is some integer. This is true for 
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y ,  := xoyo - x ,  from the calculation above. Assume it is 
true for yi:  

inputs for this purpose. Consider the system 

il = U, 

i* = U, 

x 3  = ( x ,  + Ex;)ul 

i i +  I = ~ i u 2  

= c a ( m )  sin ( m k  f 1)t cos kt 
m 

Hence, y i + l  only has components at nonzero frequencies 
m'k f 1 and therefore yi(27r) = y,(O). 0 

To include systems with more than two inputs, we 
replicate the structure of (13) for each additional input. 
Let hfj represent the motion corresponding to the Lie 
product Xi.  In the two input case, xo = h:, x,  = h;, 

m-chain system: 

This is similar to a chained system with a single chain: 
adi,g,, k = 0,1,2,3, together with g, forms a basis for 
R5. 

If we apply inputs U, = sin t and U, = cos3t, we get 
the following motion, starting from x = 0, 

and y o  = h;,  y ,  = hf,. The following system on R" is an 4297)  = 0 

x 2 ( 2 d  = 0 

IT Proposition 6 (Multichain System Controllability): The 
multi-chain system of (14) is maximally nonholonomic and 

X , ( ~ I T )  = - + 0 . 0 3 ~ ~ .  
24 

can be steered using sinusoids. 
Proof The system (14) can be rewritten 

h = X , U ,  + +X,U,  

with 

Given any two X i ,  Xi, their Lie product expansions only 
involve terms of the form hfj for some k. But this is 
precisely the vector fields from Lemma 3 and hence 

f3 
k ad X. = (-I),- 
x i  I ah& 

Taking these terms for all possible i ,  j ,  k we get a set 
of independent Lie products just as in the proof of 
Theorem 4. 

To show that the system can be steered using sinusoids, 
pick any i , j  E {l;.., m),  i > j .  Fix uI = 0 for all I # i ,  j .  
The resulting system is identical to (13) can be steered 
using Algorithm 3. By choosing all possible combinations 

0 of i and j ,  we can move to any position. 

C. Noncanonical Chained Systems 

The reason for this perturbation in x4 is that the (small) 
nonlinear terms cause zero frequency components to 
appear in i4. Hence, we cannot use simple sinusoids to 
steer this system as before. 

Nonetheless, there are many special instances where 
sinusoids are an important tool. For example, we were 
able to steer the automobile with sinusoids, despite the 
nonlinearities. Since the automobile had degree of non- 
holonomy 3, the problems present in the previous exam- 
ple do not occur. Another example is a system which has 
the chained canonical form until the last coordinate. In 
this case, harmonic analysis is needed when finding the 
motion at the last step of the algorithm and zero fre- 
quency terms do not appear in any previous coordinates. 

It may also be possible to use feedback transformation 
to convert certain systems into chained canonical form. 
This is similar to the technique used in nonlinear control 
to convert a nonlinear system into a linear one by using a 
change of coordinates and state feedback. Similar efforts 
have been used by Lafferriere and Sussmann [261 to 
convert systems into nilpotent form for use with their 
planning algorithm. It is interesting to note that in several 
of their examples, the converted systems were also in 
chained canonical form. We study this possibility in detail 
in the next section. 

Finally, sinusoids may be useful for steering systems 
We would like to extend the class of systems which we 

can steer by including systems which have similar struc- 
ture to (131, but with additional nonlinearities. The follow- 
ing example illustrates the limitations of using sinusoidal 

which ake not locally in canonical form. The- minimal 
structure necessary to attempt motion generation using 
sinusoids is a triangular system [38]. A system is triangular 
if we can find a set of coordinates h = (ho,  h',..., hP) E 
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J4 -Ao = 
dx 

RmoXm1X - X m  P = R" such that 

h O = v  V E R m o  

6' = f ' ( h o ) v  

h2 = f 2 ( h 0 ,  h')v 

- 
0 1 0  0 ... 

* * a ( x >  * ... * 
* 0 * a h )  

* o  ... 0 

* 

- 

h P  = f P ( h O ,  . . a ,  hP-')v.  

The triangular form was necessary in our examples to 
insure that the differential equations driven by sinusoidal 
inputs could be integrated in a stepwise fashion. 

D. Converting Systems to Chained Form 
In this section, we introduce a set of sufficient condi- 

tions for determining if a system can be converted to 
chained form. This set of conditions gives a constructive 
method for building a feedback transformation which 
accomplishes the conversion. We concentrate on the two 
input case with a single chain. 

Proposition 7 (Converting Systems to Two-Chained Form): 
Consider a controllable system 

x = g , (x )u ,  + g,(x)u,  

with g,, g, linearly independent and smooth. Define 

A. := span ( g , , g ~ , a d , ~ g ~ , . . . , a d ~ ~ ~ ~ ~ ]  

A, := span (g,, adglg2,-, ad;;'g,) 

A 2  := span (g2,adglg2,~.~,ad~;3g2] 

If for some open set U, A o ( x )  = R" for all x E U c R" 
and A, and A, are involutive on U and there exists a 
smooth function h,: U + R such that dh, A I  = 0 and 
Lglh,  = 1, then there exists a local feedback transforma- 
tion 

5 = 44x1 U = p ( x ) v  

such that the transformed system is in chained form: 

51 = U1 

i 2  = v2 

53 = 52v1 

5 = 5,-1v,. 

Proofi By assumption, there exists a function h,: 
U + R such that dh, A, = 0 and dh, ' g ,  = 1 .  Further- 
more, dh, . A, = 0 and since A, is an involutive distribu- 
tion of codimension 2, we can find a second function h,: 
U + R such that dh, - A, = 0 and dh, - ad:F2g, # 0. 

Define the map 4: x - 5 as 

51 = h ,  
5, = L",'h, 

5"- 1 = Lglh2 

5 n  = ' 2 .  

To verify that 4 is a valid change of coordinates, we use 
the fact that 

L i f , g l h  = L f L g h  - LgL,h 

so that 

~ad;;zg,h2 = Lg,Ladi;3g2h2 - Ladi;3gzLglh2 

= ( - I )"-ZLg2L"p~'h2 # 0 

and Ladk h ,  = 0 for k < n - 2 by the same reasoning. 
Using this calculation, 

81 2 

where a(x)  = Lg2L"p;2h, # 0. ( d 4 / d x ) A 0  is full rank, 
hence 4 is a local diffeomorphism. 

Evaluating the derivatives of the coordinate transfor- 
mation, we define 

v1 := U 1  

v2 := (L: ,  'h , )u ,  + ( L g 2 L ~ ~ 2 h , ) u , .  

Since Lg2L'&,'h2 # 0, this change of inputs is invertible 
0 

This proposition gives a set of sufficient conditions for 
converting a system with relative growth vector U = 
(2, l,..., 1) into chained form. In order to apply the results, 
however, we must solve two sets partial differential equa- 
tions: dh, A, = 0, dh, -g ,  = l and dh, A2 = 0. This 
task can be simplified if g, and g, have the special form 

a n 

and the resulting system is in chained form. 

In this case, choosing h, =xl  shows that A, is always 
involutive and we are left with only one involutivity condi- 
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tion and associated partial differential equation. It is 
always possible to locally put g, and g, into this form 
using a change of input, due to the assumption that the 
input vector fields are linearly independent. This change 
of input is not unique. 

One corollary to Proposition 7 is that all systems with 
relative growth vector c = (2,l)  can be converted to 
chained form. Using the change of basis described above, 
this becomes a direct consequence of the fact that all 1 
dimensional distributions are involutive. 

Example 9: Consider as our first example, the kinematic 
model of an automobile. The equations governing the 
motion of the system were derived in Section 11-C: 

f = cos eu, 

3 = sin Ou, 

C j  = U, 

. 1  
8 = - tan +U, 

1 

(15) 

To convert the system to chained form, we first scale the 
inputs so that u1 enters f directly. Reusing the symbol ul ,  
the kinematics become: 

x = U, 

y = tan Ou, 

4 = U 2  

6 = - sec 0 tan 4ul .  

Choose the y position of the car as the function h,; 
it is easy to verify that this function annihilates A, in 
Proposition 7. The resulting change of coordinates is 

1 
1 

51 = x  

6 = - sec3 e tan 4 
2 1  

t3 = tan 8 

54 = Y  
U1 = VI 

U, = - - sin’ 4 sin ev, + - cosz e cos3 +U,. 

1 

3 1 
1 1 

And the transformed system has the form: 

i l  = U1 

i, = U2 

8 3  = 52v1 

i 4  = 63u1* 

This system can now be steered using the sinusoidal 
algorithm of the previous section or another method, such 
as Lafferriere and Sussmann’s algorithm for generating 
motions for nilpotent systems. The motion is implemented 
as a feedback precompensator which converts the U inputs 

into the actual system input, U. This feedback transforma- 
tion agrees the that used in Lafferriere and Sussmann 
to nilpotentize the kinematic car example. Their formula- 
tion of the feedback transformation was not presented, 
although it seems clear that a similar approach must have 
been used. 

Fig. 8 shows the results of using the chained form to 
steer an automobile. These trajectories are qualitatively 
similar to those in Fig. 7, but do not require the calcula- 
tion of Fourier coefficients for determining open-loop 
trajectories. Instead, the system requires feedback com- 
pensation to place the system into chained form. 

Example 10 (Car with N trailers): Consider first the case 
of a car pulling a single trailer. The equations of motion 
are identical to those of the car, with an additional 
equation specifying the motion of the attached trailer: 

6, = sin(8, - e,)U,. 

By solving the partial differential equations in the proof 
of Proposition 7, it can be shown that the function 

generates a chained set of coordinates. Again we can 
locally steer the trailer using sinusoidal inputs or other 
methods. 

Note that in this example, Algorithm 2 cannot be applied 
directly: the system is not a second order system. Further, 
the original. system description does not have triangular 
structure (e, depends on e,), so it is difficult to use 
sinusoids combined with Fourier analysis to generate a 
desired motion. 

When additional trailers are added, the distribution A, 
is no longer involutive and hence the procedure outlined 
above does not apply. Since the conditions in the proposi- 
tion are only sufficient conditions, this does not mean that 
a car with N trailers cannot be steered using sinusoids. 
But a more complicated change of basis would be required 
in order to convert the vector fields to the necessary form. 
This example points out the weaknesses of the theorem 
and provides directions for future research. We have 
begun this program in [52]. 

V. DISCUSSION AND FUTURE WORK 
Most current nonholonomic motion planners rely on 

special system structure to generate efficient motions. In 
some cases the structure is very specific, as evidenced by 
the large number of path planners for car-like robots 
using the special form of the kinematics for that system. 
More general path planners, such as the one proposed by 
Lafferriere and Sussmann [26], require that either the 
system be nilpotent or that an iterative procedure 
be used. In the nonnilpotent case, the iterative algo- 
rithm generates very complex paths which can steer arbi- 
trarily close to the goal only at the cost of additional 
complexity. The results of Section I11 are somewhat 
complimentary-the methods can easily be applied to 
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Fig. 8. Sample trajectories for a car using chained form. 

certain systems which are not nilpotent, but the general 
case requires a restrictive canonical form. 

Research in efficient motion planning for general 
nonholonomic systems can proceed in many ways. More 
general conditions under which a distribution can be 
represented by a nilpotent or chained basis would clarify 
the extent to which particular algorithms can be applied. 
On the other hand, new approaches using metric or other 
properties of nonholonomic distributions might lead to 
path planners which work for more general classes of 
systems. Computational approaches such as those pro- 
posed by Barraquand and Latombe [2] might also be 
extended to handle higher dimensional systems with very 
few structural requirements. 

The work in nonholonomic motion planning thus far 
has been primarily in the generation of open-loop trajec- 
tories. Closed-loop control of nonholonomic systems is 
very difficult, in part because of fundamental restrictions 
which prohibit the existence of smooth feedback con- 
trollers which asymptotically stabilize a point. Indeed, one 
can show using the results of Brockett [7], [47] that the 
class of nonholonomic systems is not stabilizable by 
smooth state feedback. Nonetheless, it is vital to intro- 
duce closed loop control for these systems to account for 
initial condition and modeling errors, noise, and other 
effects that are encountered in any real implementation. 
Fig. 9 shows an example of the effects of initial condition 
errors on parallel parking maneuvers for an automobile. 

Several researchers have initiated research in feedback 
control of nonholonomic systems using either discontinu- 
ous or time-varying state feedback to circumvent the 
limitations imposed by Brockett’s conditions. Recent work 
by Coron has shown that it is possible to stabilize a 
nonholonomic system using smooth, time-varying state 
feedback [l l] .  Constructive approaches have been pre- 
sented by Samson [44], [45] and Pomet [42]. Discontinuous 
feedback laws for specific systems have been proposed by 
Canudas [12] and Pomet et al. [43]. In addition, Bloch and 

Y 

Fig. 9. Effects of initial condition errors on open-loop paths. The gray 
line shows a parking maneuver for an automobile. The solid path is the 
trajectory which is followed when the initial steering wheel angle of the 
car is off by 0.05 radians (approximately three degrees). 

McClamroch have studied problems related to stabiliza- 
tion to a manifold instead of a point [31, [41. 

Another possible approach to the control of nonholo- 
nomic systems is the study of controllability along a refer- 
ence trajectory. If we are given a desired state trajectory, 
we would like to construct a controller which stabilizes 
the system to this trajectory. The simplest example of such 
a controller is a control law for steering a car down the 
road. While the car is moving, it is quite easy to linearize 
the system and design linear feedback controllers which 
cause the car to stay aligned with a given trajectory. In 
fact, if the car is moving at a constant velocity, u1 = uc, 
then we can write 

i = gl(x)vc + g,(x)u,  

= f ( x )  + g,(x)u, .  

Furthermore, this system is completely controllable as a 
nonlinear system. Methods for extending these results to 
more complicated systems are currently being pursued 
[561. 

The development of closed-loop controls may allow 
simplifications in planning for nonholonomic systems. 
Rather than attempt to find an input which steers us 
between the initial and desired locations, we might con- 
struct a piecewise feasible trajectory which connects the 
two points. We then apply a feedback controller about the 
piecewise feasible segments to implicitly define the input 
U. To illustrate this approach, we consider a parallel 
parking maneuver as shown in Fig. 10. This controller was 
constructed by using piecewise linear state feedback for 
each feasible segment. 

Finally, we consider the problem of planning for sys- 
tems with a nonzero drift vector field: 

i = f ( x )  + g ( x ) u .  

The planning problem for this system is to steer between 
two equilibrium points of the system using U. If the 
equilibrium points lie on a connected manifold and the 
system is controllable at each point along the manifold, 
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Y [12] C. Canudas de Wit and 0. J. Sordalen, “Exponential stabilization 
of mobile robots with nonholonomic constraints,” submitted to 
IEEE Trans. Autom. Contr., May 1991. 

[13] B. R. Donald, “Planning multistep error detection and recovery 
strategies,” Int. J.  Robotics Res., vol. 9, no. 1, pp. 60, 1990. 

[14] M. A. Erdmann and M. Mason, “An exploration of sensorless 
manipulation,” IEEE J. Robotics Automation, vol. 4, no. 4, pp. 

[15] C. Femandes, L. Gurvits, and Z. Li, “Foundations of nonholo- 
nomic motion planning,” Tech. Rep. 577, Courant Institute of 
Mathematical Sciences, New York University, 1991. 

[161 V. Gershkovich and A. Vershik, “Nonholonomic manifolds and 
nilpotent analysis,” J. Geometry Phys., vol. 5, no. 3, pp. 407--452, 
1988. 

369-379,1988. 
x 

Fig. 10. Parallel parking maneuver using piecewise feasible segments 
(gray lines) and closed-loop control. 

this problem can be solved for very general systems (see 
[19] for a specific example). However, if the start and goal 
position are not connected by an equilibrium manifold, it 
is not clear how to proceed. Although the existence of a 
trajectory is guaranteed by the appropriate controllability 
conditions, construction of a trajectory for systems with 
drift is still an open problem. 
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