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A GENERAL THEOREM ON LOCAL CONTROLLABILITY*

H. J. SUSSMANNf

Abstract. We prove a general sufficient condition for local controllability of a nonlinear system at an

equilibrium point. Earlier results of Brunovsky, Hermes, Jurdjevic, Crouch and Byrnes, Sussmann and
Grossmann, are shown to be particular cases of this result. Also, a number of new sufficient conditions are
obtained. All these results follow from one simple general principle, namely, that local controllability follows
whenever brackets with certain symmetries can be "neutralized," in a suitable way, by writing them as linear
combinations of brackets of a lower degree. Both the class of symmetries and the definition of "degree"
can be chosen to suit the problem.
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Introduction. In recent years, several papers have been published giving sufficient
conditions for a nonlinear control system to be locally controllable from a point. (Cf.
Brunovsky [3], Crouch and Byrnes [5], Grossmann [8], Hermes [10]-[13], Jurdjevic
[14], Stefani [21], [22], Sussmann [24], [25].) The purpose of this article is to prove
a general theorem which contains all these results as particular cases and, in addition,
gives stronger results. Our result (Theorem 2.4) shows that many known sufficient
conditions can be derived in a unified way from a single general principle, namely,
the combination of a nilpotent approximation with the use of input symmetries.
Section 2 is devoted to the statement of the main theorem, preceded by an outline of
the basic facts and definitions needed for its formulation. Section 3 reviews the basic
formalism needed to set up the nilpotent approximation, and proves a number of
technical lemmas needed to turn this approximation into a tool for establishing local
controllability results. Sections 4 and 5 introduce the basic ingredients of our main
result, namely, dilations and invariant elements. The proof of the main theorem is then
given in 6. In 7, we review in detail the various controllability results referred to
above, and explain how they all follow from our result. We also prove stronger versions
of several of those theorems, and some new sufficient condition. Finally, in 8 we
discuss some of the limitations of our method. In addition to the observations of 8,
we remark that there are recent results by R. M. Bianchini and G. Stefani, as well as
work by H. Knobloch and K. Wagner, which provide new sufficient conditions that
are not contained in the ones given here.

1. Preliminaries. The local controllability problem has a long history, beginning
with the classical controllability theory for linear systems, and the first nonlinear local
controllability result, namely, the theorem which states that if the linearization of a
system at an equilibrium point p is controllable, then the system itself is locally
controllable from p in small time (i.e. for every T> 0, the time T reachable set from
p contains p in its interior; cf., for example, Lee and Markus [17]). This "small-time
local controllability" property, henceforth abbreviated as STLC, is of interest to control
theorists for a number of reasons, such as: (a) that a sufficient condition for STLC is
obviously equivalent to a necessary condition for the constant trajectory x(t)--p to
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 159

lie on the boundary of the attainable set from p; since the simplest form of the
Pontryagin Maximum Principle is precisely one such necessary condition, the STLC
problem can be viewed as a particular case of the general problem of "high order
optimality conditions;" (b) that STLC is equivalent to an important property of the
optimal time function V, namely, continuity at p. (Here V is defined by letting V(q)
be the infimum of all the times T such that q can be reached from p in time T. If we
wish to study the more common V function, defined in terms of the time it takes to
steer q to p, then the continuity of V at p is equivalent to the STLC property for the
system obtained by running the original system backwards.)

More recently, the problem has attracted the interest of "differential geometric
control theorists," i.e. of those who take the point of view that a control system is
primarily a family of vector fields on a manifold, and a lot of the control-theoretically
interesting information about the system should be contained in the Lie brackets of
these vector fields (cf. [9], [16], [19], [23], [26]). At the early stages of the development
of this "Lie theoretic approach," attention was concentrated on proving those results
that followed most naturally from the method. In particular, it was recognized right
away that the Lie algebraic method yielded a complete characterization of local
controllability for real analytic systems with the somewhat unnatural property of being
"symmetric," i.e. such that every trajectory run backwards is also a trajectory. (Hermann
[9], Lobry [19]; the result is known as "Chow’s Theorem.") On the other hand, for
"reasonable" (i.e. not necessarily symmetric, but real-analytic) systems, the method
yielded a complete characterization of a property which is related to, but not quite
the same as, STLC. D. Elliott introduced the name "accessibility property" to refer to
the property that the reachable set from p has an interior point. The so-called "positive
form of Chow’s Theorem" (Krener [16]; cf. also [23]) characterizes this property in
terms of Lie brackets. In 1974, P. Brunovsky [3] started from the observation that the
"Lie theoretic" theorem about symmetric systems does not even give the most classical
of all local controllability theorems, namely, the one for linear systems. He then
proceeded to single out a class of systems (called "odd systems") which could be
proved to be STLC by Lie theoretic methods, and contained the class of linear systems.
Since then, other local controllability results have been proved, as indicated above.
The common feature of all these results is the exploitation of certain "structural
symmetries" of a problem.

The traditional approach towards proving local controllability theorems has been
to construct "control variations." Heuristically, if one can construct control variations
in all possible directions, then the reachable set ought to be a full neighborhood of
the starting point. The argument can usually be made rigorous by some topological
consideration. Ideally, the construction of variations in various directions should
involve Lie bracket calculations. In practice, however, these calculations become rather
cumbersome, and a different method is desirable which would construct, once and for
all, a large collection of variations. One such method was used by us in [25], to prove
a conjecture of H. Hermes. (Our earlier paper [24], which proved a different sufficient
condition for STLC, was based on constructing variations, and it has only recently
become clear to us that the result of [24] also follows using the method of [25].) The
goal of the present paper is to prove the most general result that can be obtained by
means of the method of [25].

A brief outline of the approach is as follows. Since a control system is primarily
a family V { V: I} of vector fields, one can associate with it the Lie algebra L(
of vector fields generated by V. Forgetting about rigor, one can think about "the Lie
group" G(V) with Lie algebra L(V), and obtain an "action" of G(V) on the state
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160 H.J. SUSSMANN

space of the system. A g G(V) is a product 0f exponentials exp (tj Vj), and therefore
the result gp of acting on p by g is a point obtained by starting from p and following
integral trajectories of the V, with switchings of vector fields allowed, and with motion
"backwards in time" permitted as well. Those g’s for which all the tj are positive
constitute a subsemigroup S of G(V), which gives rise to the true trajectories of the
control system. The reachable set from p is S.p. For V to be locally controllable from
p, S.p has to have a nonempty interior, and so G(V)p must be open, which means
that, at least locally, G(V) has to act transitively. If H is the isotropy group at p of
this action, then a sufficient condition for p to be an interior point of S.p is that the
interior of S in G(V) should contain an element of H.

To make this rigorous, an algebraic formalism is needed to surmount the obstacles
arising from the fact that L(V) is, in general, infinite dimensional, and therefore (3(
is not a well defined "Lie group." Rather than work with L(V) one works formally,
with a free Lie algebra L(X) in indeterminates Xi, and with its completion, the Lie
algebra (X) of formal Lie series in the Xi. Then there is a well defined group ((X),
the group of exponentials of Lie series (cf., for example, Serre [20]). The controls can
be embedded in G(X) as a subsemigroup S, by means of a map which assigns to each
control a noncommutative formal power series, obtained by solving the differential
equation of the system formally, using the indeterminates rather than the vector fields.
(This map, introduced by Chen in [4], has been extensively used in control theory by
M. Fliess, under the name of"Chen series," cf. [6], [7].)Although obvious convergence
and integrability difficulties arise if one tries to make (3(X) act on the state space, the
subsemigroup S does act in an obvious way, since S is identified with the set of
admissible controls. And the series of a control u(. contains a lot of information
about the action of u(. ). (More precisely, it is an asymptotic series, and it conve,rges
in the analytic case if u(. is sufficiently small, cf. [1], [2], [7], [18], [25].) Since G(X)
is not yet a true Lie group, one then makes a nilpotent approximation GN(X) of t(X)
by killing all brackets of degree > N. If I is finite, GN(X) is now a Lie group in the
usual sense. Then there is a corresponding approximating semigroup S. Although it
is not possible in general to have Gs(X) act on the state space, one can still define
an "approximate action" and an "approximate isotropy group." To get local controlla-
bility one must be able to prove (modulo technicalities) that the interior of Sv intersects
the isotropy group. This we do by proving a general lemma that says that the interior
of Ss always contains an element of a "very special form." It then follows that, if
one hypothesizes that all these "very special" elements are in the isotropy group, one
gets controllability. As will be made clear in 7, all known local controllability theorems
amount to various forms of this hypothesis.

The special elements are obtained as the fixed points of the action of a finite group
A on "input symmetries." An input symmetry is, roughly, a linear map from L(X) to
L(X) whose exponential maps S to S. Examples of such symmetries are" (a) multiplying
a control by -1, if its range of values permits it; (b) interchanging two controls; (c)
time reversal. If a system has many symmetries, then there will be few A-fixed elements,
and the resulting local controllability theorem will be very strong. As an example, we
remark that the introduction of time-reversal, which was not used in [25], enables us
here to prove a result which is considerably stronger than the Hermes conjecture proved
in [25].

It turns out that the condition that certain "special elements" of the semigroups
S be in the "isotropy group" can be rephrased, by passing to the logarithms, as the
requirement that certain Lie brackets should vanish at p. It then becomes apparent
that one can do slightly better. The brackets need not vanish. It suffices for them to
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 161

be "neutralized," i.e. expressible as linear combinations of brackets of lower degree.
And there is a certain amount of freedom as to the concept of "degree" to be used.
One can use any one-parameter group of dilations to define "degree," provided that
certain technical conditions hold.

In order to avoid unnecessary complications, we will only work with systems that
can be studied using a free Lie algebra generated by a finite set of indeterminates.
That is, we will only study systems where the collection V of associated vector fields
is either finite, or a set of linear combinations of a finite set of vector fields. That is,
we will only work with systems of the form

k

(1.1) 2 ., )igi(x)
i=1

where the control v- (Vl,." ",/)k) is required to satisfy a constraint v J, where J is
some subset of Rk. It is then clear that we can assume that J linearly spans Rk. If J
does not affinely span k, let A be the affine hull of J. By making a linear change of
coordinates, we may assume that A is the set {1}xk-1. Then the system (1.1) becomes

(1.2) =fo(x) 4- Z uif(x)
i=1

with control constraint u (ul, , u,,) K. (Here K is such that J {1} x K, and
m=k-1.)

If J affinely spans Rk, then we let fo 0, m k, gi =f for i= 1,..., m, K J,
ui vi for i= 1,..., m. Then our system is also of the form (1.2), with a control
constraint u K, where K affinely spans m. It is in this form that, from now on, all
our systems will be expressed.

2. Statement of the main theorem. In this section we will state our main local
controllability theorem. In order to get to the statement as quickly as possible, we will
omit a number of definitions. Detailed definitions of all the concepts occurring in the
statement .are given in subsequent sections.

We consider control systems of the form

(2.1) =fo(x) + Y. uif(x), x c= M
i=1

with a control constraint

(2.2) U-"(Ul,"" ",Urn)K

where
(CS1) M is a smooth (i.e. C) manifold,
(CS2) f-(fo,""" ,fro) is an (m+ 1)-tuple of Coo vector fields on M,

and
(CS3) K is a subset of m such that

(2.3) Att (K) R

Here Att (K) denotes the affine hull of K, i.e. the set of all finite linear combinations
Z Oliui with the ui K, a, R, and -,i ai 1.
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162 H.J. SUSSMANN

To specify a system we must give M, f and K. So we will simply refer to the triple
E (M, f, K) as the control system, it being understood that M, f and K are supposed
to satisfy (CS1), (CS2) and (CS3).

An admissible control for , is a Lebesgue integrable, K-valued function defined
on some interval [0, T]. If u(. ):[0, T]-> K is an admissible control, a trajectory for
u(.) is an absolutely continuous curve x(.):[0, T]-> M such that

(2.4) :(t) =fo(x(t)) + E ui(t)fi(x(t))
i=1

for almost all [0, T ].
If q M is of the form x(T) for some trajectory such that x(0)= p, then q will

be said to be reachable from p in time T. The set of all q that are reachable from p in
time T for the system E (M, f, K) is the time T reachable set from p, and will be
denoted by Reach (E, T, p). Also we write

(2.5) Reach (, <- T, p) [.J Reach (E, t, p)

for T=>0.
The system 2 is small-time locally controllable (STLC) from p if p is an interior

point of Reach (E, =< T, p) for all T> 0. An equivalent characterization of this condition
involves the optimal time function V.,p. We define V,p(q) to be the infimum of those
T such that q is reachable from p in time T. (If no such T exists, then Vr.,p(q) +o.)
Then E is STLC from p if and only if V,p is continuous at p.

One can also consider the reachable sets obtained by restricting the class of
admissible controls. For instance, we let Reachp (, T, p), Reachp (E, _-< T, p) be the
reachable sets obtained by using piecewise constant controls, and we say that X is
STLCpc from p ifp is an interior point of Reach, (, <_- T, p) for all T> 0. The sufficient
condition stated below in our main theorem is for STLC. However, under the hypotheses
of the theorem, STLC and STLCpc are equivalent, as will be observed below (cf.
Proposition 2.3), so that the distinction between these two types of controllability need
not worry us here.

If K is compact and convex, then one can also consider the sets reachable by
bang-bang controls. (A bang-bang control is a piecewise constant control with values
in the set of extreme points of K.) The corresponding small-time local controllability
property is denoted by STLCbb. Again, Proposition 2.3 will show that STLC and
STLCbb are equivalent under the hypotheses of our main theorem.

If : is a family of C vector fields on a manifold M, then L() denotes the Lie
algebra of vector fields generated by the elements of . If V is any set of vector fields
on M, and p M, then we write

(2.6) F(p) { V(p): V

The family is said to satisfy the Lie algebra rank condition (LARC) at p if L(Z)(p)
is the whole tangent space of M at p. An ;-trajectory is a curve x(" which is a finite
concatenation of integral arcs of members of :. (Note: if an integral arc y of a member
f of is reparametrized by reversing the sense of time, then the resulting curve is an
integral arc of -f, and need not be an -trajectory, since -f need not belong to :.)
The family has the accessibility property (AP) from p if, for every T> 0, the set of
points that can be reached from p by -trajectories in time -<T has a nonempty
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 163

interior. The following is a standard result from accessibility theory (the "positive form
of Chow’s Theorem," cf. Krener [16], Sussmann and Jurdjevic [23]).

PROPOSITION 2.1. Let ; be a family ofC vectorfields on a Coo manifold M. Then
the LARC at p implies the AP from p. Conversely, the AP from p implies the LARC at
p ifM is a real-analytic manifold and the members of are real-analytic.

To a system E of the form (2.1), with a control constraint (2.2), we associate the
family whose members are all the vector fields fo+i= uif, for (Ul," ", Um) K.
The hypothesis that Aft (K)= R" implies that the linear span of the members of v.
is precisely the same as the linear span of fo," ,fro. Therefore L()= L(f), so that
r satisfies the LARC at p if and only if f does. On the other hand, it is easy to see
that an trajectory is precisely the same as a trajectory of E for a piecewise constant
control. Hence E cannot be STLCpc from p unless v. satisfies the AP from p. On the
other hand, if fo,"" ",f,, are real analytic vector fields, z satisfies the AP from p if
and only if f satisfies the LARC from p. Therefore, in the analytic case, it is no restriction
to assume that f satisfies the LARC from p, if we seek to characterize the STLCpc
property. Actually, it is easy to prove"

PROPOSITION 2.2. A system , of the form (2.1), with a control constraint (2.2),
andfo, ",f,, real analytic, cannot be STLC from a point p unless f satisfies the LARC
from p.

Moreover, when the LARC from p holds, the distinction between STLC, STLCp
and STLCbb disappears, as shown by the following result, whose proof is given in the
Appendix.

PROPOSITION 2.3. Let , be a system of the form (2.1), with a control constraint

(2.2) thatsatisfies (2.3). Assume that f satisfies the LARC at p.
Let K be the closure of the convex hull of K, and let , be the system (M, f, ().

Then , is SLTC from p if and only if , is SLTCp from p.
In particular, Proposition 2.3 implies that, for an arbitrary E, the STLC and STLCp

properties from p are equivalent, if f satisfies the LARC at p. Also, if K is compact
and convex, STLC and STLCbb are equivalent.

The sufficient condition for STLC to be proved here involves two main ingredients,
namely, a finite group of symmetries and a one-parameter group of dilations. The
symmetries considered will be mappings of a Lie algebra which is naturally associated
to our problem. Precisely, we consider L(X), the free Lie algebra in the indeterminates
X (Xo,. , X,). We will be interested in linear maps A" L(X) --> L(X) which are not
necessarily Lie algebra automorphisms, but have a weaker property which we now
define.

Let L be a Lie algebra over R. We define [L] k for k= 1,2,... by [L]I=L,
[L]k+I=[L, Lk]. Clearly, any Lie algebra automorphism of L maps each [L]k into
itself. A linear mapping A" L--> L which is a linear isomorphism and satisfies A ([L]k)

_
[L] k for each k will be called a pseudoautomorphism of L.

In the particular case when L is L(X), the [L]k are the ideals Lk(X), where Lk(X)
is the sum of all the homogeneous components LJ’hm(x) of degree j, for j-->_ k. If
A’L(X)^ L(X) is a pseudoautomorphism, then A gives rise to a linear map from
L(X) to L(X), where L(X) is the Lie algebra of formal Lie series in Xo,’", Xm. (If
S /,(X), and S Y.j= Sj, where Sj is homogeneous of degree j, then is defined by
(S) A (S). The sum is well defined because, for each k, the only terms that may
contribute to the homogeneous component of degree k are the A (S) for j <_-k.) It is
clear that A/z /2 if A,/x are pseudoautomorphisms.

The class of controls is embedded as a subsemigroup S(X, K) of the group
(X) {exp (Z)" Z s/(X)}. A pseudoautomorphism A of L(X) gives rise to a mapping
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164 H.J. SUSSMANN

A # from (X) to (X) by letting

(2.7) A#(exp (Z))=exp (X(Z)) for Z (X).
An input symmetry for X is a pseudoautomorphism A of L(X) such that the correspond-
ing map A # maps (X, K) to (X, K). (Actually, the definition of input symmetry
only depends on m and K, and not on the particular choice of M,fo,"" ,f,,.)

The second important ingredient is a one parameter group of dilations {A(p). 0<
p < oo} of the linear space V Ll’hm(x). Then A gives rise to groups of dilations AA, AL
of the free associative algebra A(X) in the indeterminates Xo,’’ ", X,,, and of L(X),
respectively. Also, one obtains a one-parameter group ,A of automorphisms of the
algebra A(X) of formal power series in Xo," .,X,,. We call A compatible

^Awith S(X, K) if the A (p) map S(X, K) into itself for 0< p =< 1. (Equivalently, A is
compatible with (X, K) if and only if, for every u =(ul,"" ", Um) K and every p
such that 0<p_-<l, A(p)(Xo+i=l uiX) is of the form T(Xo+Y=I vX) for some
T>0, v=(v,. ., v,,)K.)

A group of dilations A as above can be used to define the A-degree of an element
Z of A(X). We call Z A-homogeneous of degree r if Aa(p)(Z) prZ for every p. If Z
is arbitrary, then Z is a finite sum of homogeneous elements, and the A-degree of Z
(denoted by degz (Z)) is the largest of the degrees of the homogeneous components
of Z

If f (fo,""" ,f,,) is an (m + 1)-tuple of C vector fields on a C manifold M,
then we can consider the map Ev (f) which assigns to every element P of L(X) the
vector field obtained by plugging in each f for the corresponding indeterminate Xi.
If p M, then we also define the map Evp (f), from L(X) to the tangent space TpM,
given by Ev (f)(P)= Ev (f)(P)(p).

We now define what it means for a Z L(X) to be A-neutralized for f at p. If Z
is A-homogeneous, we say that Z is A-neutralized for f at p if Ev (f)(Z) can be
expressed as a sum of vectors Ev(f)(Qs), where the Qs are elements of L(X) such that
degA (Qs)< degz (Z). (Clearly, the Qs can always be chosen to be A-homogeneous.)
If Z is not necessarily homogeneous, then we write Z as a sum of homogeneous
components, and we say that Z is A-neutralized for f at p if each homogeneous
component is.

With these definitions, our main result is the following.
THEOREM 2.4. Let X (M, f, K) be a control system, and let p M. Assume that:
(i) satisfies the Lie algebra rank condition at p,
(ii) there exist (a) a finite group A of input symmetries and (b) a ofle-parameter

group of dilations A {A(p): p > 0} ofLl’hm(x) which is compatible with S(X, K), such
that every A-fixed element of L(X) is A-neutralized for f at p.

Then X is small-time locally controllable at p.

3. Exponential Lie series and the nilpotent approximation. We review the basic
facts about the formalism ofnoncommutative power series and nilpotent approximation
(cf. [4], [6], [25]). The idea is to solve (2.1) formally, by using indeterminates
Xo," , Xm rather than the vector fields fo," ,fro, and then regard .a given control
system as an action of a "Lie group" G(X) of exponential Lie series, together with
the specification of a subsemigroup S(X, K) which is identified with .the class of
controls. We now make this precise.

Let X (Xo, , Xm) be a finite sequence of indeterminates. We let A(X) denote
the free associative algebra over generated by the X. For any multiindex I
(il," ", ik), with {0,. ., m} for j 1,. ., k, we let X X. X. Then A(X)
is the set of all sums aX, where the coefficients a are real numbers, the summation
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 165

runs over all possible multiindices/, and all but finitely many at vanish. (It is understood
that X 1.)

We also let A(X) denote the set of all formal power series in the noncommuting
indeterminates X, i.e. the set of all sums i atXt as above, except that the at are no
longer required to vanish for all but finitely many/. In both A(X) and ,(X), addition
is done componentwise, and multiplication is carried out using the formula XtXj Xt.j,
where I J is the concatenation of I and J (i.e. the multiindex obtained by writing,
in order, first the components of I and then those of J).

For any nonnegative integer N, we use AN’hm(x) to denote the homogeneous
component of degree N of A(X), and As(X) to denote the sum of the AJ’hm(x) for
j 0,. , N. The space As(X) is embedded as a linear subspace of A(X) but, naturally,
it is not a subalgebra. On the other hand, AS(X) is an algebra if one defines multiplica-
tion as in A(X), with the extra proviso that monomials of degree greater than N are
set equal to zero. Thus regarded, As(X) is the free nilpotent associative algebra of step
N+ 1 in the indeterminates Xo,"’, X,,. Then AS(x) can be identified with the
quotient of A(X) by the ideal of all linear combinations of monomials of degree strictly
larger than N. The canonical projection from A(X) onto As(X) is the truncation map
’x. We will write zs rather than r whenever the context makes it clear which X is
being referred to. Clearly, one can also think of AS(X) as a quotient of ,(X). The

^N ^Ncorresponding truncation map from/(X) onto AS(X) will be denoted by Zx or z
The kernels of z, s are denoted by As(X), ,s(X), respectively. In particular, o(X)
is the set of formal power series t atXt for which a6 0. The exponential map is a
well defined bijection

(3.1) exp" Ao(X) -> 1 + Ao(X)

whose inverse is a map from 1 / Ao(X) to Ao(X) denoted by "log." If S Ao(X), then
exp (S) and log (1 + S) are given by the usual power series.

One can also define AV(X) to be the set of all elements of As(X) that are linear
combinations of monomials of degree > k. Then

(3.2) Av(X) ’S(Ak(X))= " tk(X)).

The exponential map

(3.3) exps" Ao(X) -> 1 + Ay(X)

and its inverse logs are given, in this case, by power series that are actually finite
sums, due to the nilpotency of As(X).

The algebras A(X), A(X), AS(X) are Lie algebras in the usual way. We let L(X)
denote the Lie subalgebra of A(X) generated by Xo,’", Xm. An element S of A(X)
will be said to be a Lie element if[ S L(X). It is clear that S is a Lie element if[ all
the homogeneous components of $ are Lie elements. Therefore, if we let

(3.4) LN’hm(x) L(X) (q AN’hm(x),
we see that L(X) is the direct sum of the LN’hm(x), N 1, 2, 3, .

The Lie algebra L(X) is spanned by the formal brackets of Xo, , Xm. Precisely,
we define Br (X) to be the smallest subset of L(X) that contains Xo, X1,"" ", X,, and
is closed under bracketing. The elements of Br (X) will be referred to as brackets of
X. It is clear that every B Br (X) is homogeneous. (Notice that we have chosen not
to define a "bracket" as a formal expression but as an element of L(X) so that, for
example, [[Xo, X], [Xo, X2]] and [[X, Xo], [X2, Xo]] are the same element of ar (X).
Naturally, the elements of Br (X) are not linearly independent. Several systematic
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166 H.J. SUSSMANN

procedures for singling out subsets of Br (X) that form bases of L(X) can be found in
the literature, cf., for exa.mple, [20], [27], but we shall not need those results here.)

We can also define L(X) to be the set of all formal sums N=I SN such that each
SN is in LN’hm(x), i.e. the set of those elements of/(X) all of whose homogen.eous
components are Lie. The members of/(X) will be referred to as Lie elements of A(X),
and they clearly form a Lie subalgebra of/(X). The Lie algebras L(X), (X) are
known, respectively, as the free Lie algebra in the indeterminates Xo,""", X, and the
algebra of Lie series in Xo," ", X,,.

Since/(X)
_
,o(X), the exponential map is well defined on (X). The elements

of (X) that are of the form exp (S) for some S /(X) are the exponential Lie series

in Xo,"’, X,,. The set of all such series is denoted by (X). It follows from the
Campbell-Hausdorff formula that (X) is a groupAunder multiplication. The exponen-
tial map, restricted to /.(X), is a bijection from L(X) onto G(X), which will also be
denoted by "ex-,"p^ while we will use "log" to denote the inverse ma.p.

The group G(X) is almost "a Lie group whose Lie algebra is L(X)," but it fails
to be a true Lie group, since it is infinite-dimensional. However, its truncated versions

(3.5) Gs(X) s((X))
are true Lie groups. (As for (X) itself, it is a projective limit of the G(X), but we
will not make use of this fact.) Each GN(X) is a connected, simply connected, nilpotent
Lie group, with Lie algebra L(X), where

(3.6) L(X) r(L(X)) ((X)).
The exponential map from LN(X) to Gv(X) is none other than the restriction of

exp to L(X) (which is a subset of AoN(X)). We will therefore also use exp to
denote this map. Then expN is a bijection from Lv(X) onto Gv(X), whose inverse
map will, as expected, be denoted by log. Then L (X) is the free nilpotent Lie algebra
ofstep N+ 1 in Xo, , X,,,, and we shall refer to the group GN(X) as the free nilpotent
Lie group of step N+ 1 infinitesimally generated by Xo," ", X,,,.

Now suppose that we are given a Coo manifold M and an (m/ 1)-tuple f=
(fo,""" ,f,) of Coo vector fields on M. Each f is therefore a member of D(M), the
algebra of all partial differential operators P" Coo(M)--> C(M). (Here Coo(M) denotes
the space of Coo real-valued functions on M.) There is therefore a well defined evaluation
map

(3.7) Ev (f)" A(X)-> D(M)
obtained by "plugging in the f for the X," so that

(3.8) Ev (f) (I aIXI)
where, if I (i, ik), We write

(3.9) f =f,f2"" "f.
The image Ev (f)(A(X)) will be denoted by A(f). Then A(f) is the subalgebra of

D(M) generated by fo,""" ,f,. The evaluation map Ev (f) can be restricted to L(X).
The corresponding map, which we will also denote by Ev (f), is a surjective homo-
morphism from L(X) onto L(f), where L(f) is the Lie algebra of vector fields generated
by fo,""" ,f,,.

The kernel of Ev(f)’A(X)-> A(f) is the set of all algebraic identities satisfied by
fo," ,f,,, and we will denote it by AI (f). Similarly, the kernel of Ev (f)" L(X)-> L(f)
is the set of Lie algebraic identities satisfied by fo,"" ,f,,, and we denote it by LI (f).
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 167

If p is a point in M, then we use Dp(M) to denote the set of all partial differential
operators at p, i.e. the quotient of D(M) modulo the set of P D(M) such that
(Pb)(p) 0 for every b C(M). Also, we let Tp(M) denote the tangent space of M
at p. We then have the evaluation atp map Evp (f) A(X) --> Dp(M) given by Evp (f)(S)
(Ev (f)(S))(p). The kernel of this map is the set of algebraic relations among the f at

p, and will be denoted by AR (f, p). Similarly, Evp (f) maps L(X) to Tp(M). The kernel
of this map, denoted by LR (f, p), is the set of Lie algebraic relations (or, simply, Lie
relations) among the f at p. (For instance, [Xo, X1]+ X2 is a Lie identity satisfied by
fo,fl,f2 iff the vector field [fo,fl]+f2 vanishes identically. Similarly, [Xo, X1]+ X2 is.
a Lie relation among the f at p iff [fo,fl]+f2 vanishes at p.)

The image Evp (f)(L(X)) is precisely the subspace L(f)(p) of Tp(M), where

(3.10) L(f)(p) { V(p) V L(f)}.

The system f satisfies the Lie algebra rank condition (LARC) at p if L(f)(p)= Tp(M),
i.e. if Evp(f) maps L(X) onto Tp(M).

The evaluation maps Ev (f), Evp (f) can formally be applied to series $ in A(X),
giving rise to formal infinite sums of partial differential operators (which, if S L(X),
are vector fields). However, if one wishes to make sense of Ev (f)(S) as a mathematical
object in a rigorous way, technical difficulties arise. (For instance, suppose that fo,f
are Coo vector fields that satisfy [fo,fl]-fl, and S is the Lie series
Y.k__o (--1)k(ad Xo)k(x). Should the general definition of Ev (f)(S) be such that, in
this particular case, Ev (f)(S) is the zero series?) Rather than attempt to overcome
these difficulties, we shall avoid them, by agreeing to refer to the series Ev (f)(S) (or
Evp (f)(S)) only as part of purely heuristic discussions which are not expected to be
rigorous anyhow, or as part of statements that are given a precise mathematical
translation. (For instance, the phrase "Evp (f)(S), applied to a function b, is asymptotic
to..." will be translated into a collection of inequalities involving only the truncations
EVp (f)(’N(s)), in which only finite sums occur.)

We can also define truncated evaluation maps EvN (f), Ev (f) by restricting Ev (f)
and Evp (f) to AN(X) or to LN (X). However, the algebra structure of AN(X) and the
Lie algebra structure of LN(x) do not turn AN(X), LN(x) into subalgebras of A(X),
L(X). This implies that EvN (f) need not be an algebra homomorphism from AN(X)
to A(f) or from LN (X) to L(f). Also, the point evaluation maps Ev (f) are defined
in an obvious way as maps from AN(x) to Dp(M) and from LN(X) to Tp(M).

If gp D(M) --> Dp(M) is the map Q-> Q(p), then Ev (f)= po EvN (f). We use
AIN (f), LIN (f), ARN (f, p), LRN (f, p) to denote, respectively, the kernels of the
maps EvN (f)’AN(X)-> D(M), EvN (f)" LN(X)-> L(f), Ev (f)" AN(X)--> Dp(M) and

Ev (f)" LN(X)-> Tp(M). Then AIN (f) is the set of algebraic identities of degree <-N
among theft, and similar self-explanatory names will be used for the other sets LIN (f),
ARN (f, p), LRN (f, p). Since, as indicated earlier, EvN need not be a homomorphism,
the sets AI N (f) may fail to be ideals of AN (X), and the LIN (f) need not be ideals
of LN(X). Also, ARN (f, p) can fail to be a subalgebra of AN(X), and LRN (f, p) may
fail to be a Lie subalgebra of LN (X). (For instance, let f (fo, fl, f2), and suppose that
[fo,fl](p)=fl(p), and f(p) =0. Then [Xo, X1]-XILR2 (f,p) and X2sLR2 (f,p).
If LRE(f,p) were a Lie subalgebra of LE(Xo, X1,X2), it would follow that
[[Xo, XI],XE]-[X,X2] is in LR2(f,p), i.e. that [X1,X2] is in LR2 (f,p), since
[[Xo, X1], X2] =0 in LE(Xo, X, X2). So [fl,fE](P) =0. However, it is easy to construct
fo,fl,f2 that satisfy the conditions stated above as well as [fl,f](P) 0.)

As in [25], 0//m will denote the set of all functions u(. whose domain Dom (u(.))
is a compact interval of the form [0, T], such that u(. takes values in R and is
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168 H.J. SUSSMANN

Lebesgue integrable on [0, T]. The time T is the terminal time of u(.) and is denoted
by T(u(.)). If0<_-t_-< T(u(.)), then the restriction of u(.) to [0, t] is denoted by u’(.).
The components of u(. are Ul(" ),’’ ", u,,(. ), and we write Uo(t)-- 1.

If we consider the differential equation

( )(3.11) ,= S Xo+ , u,Xi
i=1

foran A(X)-valued function S(t), 0<-_ <-_ T(u(. )), with the initial condition $(0) 1,
then the solution is

(3.12) S(t) = u, X,

where o UI is the iterated integral

(3.13)

if 4) # I= (i,,’’’, ik). (We let to u6 1.)
The series S( T(u(. ))), with tS(t) given as above, is the formal power series

associated with the control u(.), and will be denoted by Ser(u(.)). The mapping
Ser" ,, A(X) is injectve and, if 0//r, is regarded as a semigroup under the operation
of concatenation, and A(X) is equipped with multiplication, then Ser is a semigroup
homomorphism (cf. [25, Lemma 3.1]). Moreover, Ser (u(.)) is always an exponential
Lie series (cf. [25, Pp. 3.1]), so that Ser actually takes values in G(X). The subsemi-
group Ser (0//,,) of G(X) will be denoted by S(X). Since Ser is injective, one should
think of S(X) as being just another way of realizing the control semigroup 0//,,, which
has the particular advantage of exhibiting ,, as embedded in a group.

If K is an arbitrary subset of R", then we can consider 0//,,(K), the subsemigroup
of qJ,, whose elements are the K-valued controls. The image of //,(K) under Ser will
be denoted by S(X, K).

One can also consider the truncated versions of the map Ser and the semigroups
;(X), ;(X, K). The truncation map .s maps solutions of (3.11) to solutions of the
same equation, regarded now as evolving in As(X). Hence, if we let

(3.14)

we find that

Sers (u(.))= CS(Ser (u(.)))

(f(u(.)) )(3.15) Seru (u(.)) E UI XI,
III<=N

Moreover, SerN (u(.)) GS(X). The sets Sers (o//,,), Sers (//,(K)) will be denoted
by Ss (X), Ss(X, K), respectively. Clearly, these subsets are subsemigroups of Gs(X).
Moreover, Ss(X) is the set of points that can be reached from the identity element of
Gs(X) by trajectories of the system

(3.16) = (S)+ Y u,/(S),
i=1

where is the restriction to Gs(x) of the linear vector field F on As(x), given
by F(S)= SX,. (It is clear that/3 is tangent to GS(X), and therefore is well
defined.) The Lie algebra of vector fields generated by FV, ., F is isomorphic to
LS(X) in an obvious way, and therefore acts transitively on GS(X). From this it
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 169

follows, using general results from accessibility theory, that SN(X) has a nonempty
interior relative to GN(X) and, moreover, this interior is dense in sN(x). More
generally, SN(X, K) is the reachable set from the identity corresponding to the system
(3.16) with the additional control constraint (ul, ", u,,) K. The Lie algebra associ-
ated with this system is the Lie algebra AN(X, K) generated by the vector fields u. F,
for u K, where we use the abbreviation u. FN for FV+i=l uiF. (Recall that
Uo- 1.) Then AN(X, K) acts transitively iit

(3.17) Aft (K) ".

Since we are assuming that (3.17) holds, we can conclude that AN(X, K) is indeed
transitive. We then have:

LEMMA 3.1. For every N,

# N(X, K)_ SN(X, K) Clos N(X, K).

(Here ’’,’’ and "Clos" mean interior and closure relative to GN(X).)
The semigroup S (X, K) is the image of ,,(K) under the map SerN. We need

nice inverses of this map, i.e. ways of selecting, for S e SN(X, K), a control Us("
,(X, K) which "depends smoothly on S" and is such that SerN (Us(’))= S. The
construction of such inverses was already done in [25]. However, we shall need a
slightly stronger result, which we now state.

As in [25], we let F be any finite sequence (3,1 , ),) of points of ", such that
Att (),1,. , 3,)= ". We let k+ denote the set of k-tuples of nonnegative numbers.
If t (tl,." ", tk) is in k+, then we define {F, t} to be the piecewise constant control
which is equal to /1 during the first t units of time, then to ),2 during time t2, and so
on. (This control is well defined even if k > r, because we extend the definition of
to all positive integers j, by making j / periodic with period r, i.e., we let ),+ ),1,
r+2

), ),2, and so on.) Any control of the form {F, t} for some k and some t .k+ will
be called a F-controL If K m and F consists of elements of K, then F will be said
to be a K-sequence.

N k SNThe map ’k,r, defined by ’r(t)- SerN ({F, t}), takes R+ to (X). Moreover, if
NF is a K-sequence, then Pk,r maps Rk+ to SN (X, K). If to e k+ is such that the differential

d’,r(to) has rank equal to the dimension of GN(X), then the F-control {F, to} is said
to be N-normal. Clearly, if F is a K-sequence and {F, to} is N-normal, then ’r(to)
N(X, K). Conversely, suppose that S e N(X, K). We claim that S ’,r(to) for some
K-sequence F and some N-normal F-control {F, to}. To see this, observe first that the
system (3.16), with the restriction u e K, necessarily has the accessibility property from
S, and the same is therefore true for the "backward system" whose trajectories are
those of (3.16) run in reverse. It then follows from standard accessibility theory that,
if U is any open subset of GN(X) containing S, then U contains a nonempty open
set V such that, for the reverse system, every S’e V can be reached from S by means
of a piecewise constant control. If we apply this with U N(X, K), we get an open
subset V of N(x, K) such that every S’e V can be steered to S by means of a
trajectory of (3.16) that corresponds to a piecewise constant K-valued control. On the
other hand, if S’e V then S’ can be reached from the identity element of GN(X) by
means of some K-valued control. This control can be approximated by piecewise
constant ones. Since V is open, we conclude that some S’e V is reachable from by
means of some piecewise constant control. This control is then necessarily of the form
{F, t} for some sequence F= ()/1, o, //k) and some to= (t,..., t)ek+ such that
0

tj > 0 for all j. Since Ait (K)= the sequence F can be assumed to be such that
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170 H.J. SUSSMANN

Af ()tl, )tk) m. (This may require that some new y’s be added at the end of F,
and then the control {F, t} has to be continued by assigning positive times t to the
new y’s. However, the can be taken to be arbitrarily small, and then the new S’
will still be in V, since V is open.) We then get a F-control {F, t} that steers to an
S’ V, and is such that F is a K-sequence and the affine hull of the elements of I’ is
m. The proof of [25, Prop. 3.3] then implies that V contains a point S" which is of
the form Vt.rt for some and some N-normal F-control {F, t}. (The proof of [25,
Prop. 3.3] shows that, if F- (yl,..., y) is such that Aft (y,. , y)= ", then an
N-normal F-control exists. This was shown by choosing an and a t such that dye(t)
had the largest possible rank tS, and then constructing a submanifold M of Gv(X)
such that dim M- iS, with the property that all the vector fields in the Lie algebra
generated by the if.Iv are tangent to M, from which it follows that t5 dim Gv(X). The
same proof applies if we now choose l, t to be such that dye(t) has the largest possible

Nrank t5 among all l, t such that v.(1) V. Such an l, t exists because there is some l, t

such that v(t) V, namely, l-k and t=t. The conclusion that iS=dim Gm(X)
follows exactly as in [25].) If we now concatenate this N-normal control {F, t} with a

piece,wise constant control that steers S" to S, it follows easily that the resulting control
is a F-control for some ’, and is N-normal. So, we have shown"

LEMMA 3.2. Let K
_
m, and let S GS(X). Then S 2V(X, K) ifand only if there

exist

(a) a K-sequence F= (yl,.. ", y) such that Aft (yl,.. ", y)
(b) a k and a t k+ such that {F, t} is N-normal and Vr(t)= S.
The existence of "nice local inverses" to the map Sers follows easily.
COROLLARY 3.3. Let K

_
", and let S (X, K). Then there exist"

(a) a K-sequence F (yl,..., y) such that Aft (y,. , y)
(b) a positive integer k,
(c) an open subset W of Gv(X) such that S W,
(d) a real analytic map d/" W-> k+, such that

(3.18) Ser ({F, O(S’)}) S’ for all S’ W.

The proof is just a straightforward application of the Implicit Function theorem.
The group (X) is the "Lie group" described at the beginning of this section.

Formally, an element S of G(X) is an exponential of a Lie series in the indeterminates
Xo,’’ ", X, and therefore Ev (f)(S) is the exponential of a vector field on M, i.e. a

map from M to M. If S (X, K), then S can be thought of as a control, and Evp (f)(S)
is the point of M to which p is steered by this control. Then L(X) is the "Lie algebra"
of the Lie group (X). Those elements Z (X) such that Evp (f)(Z)=0 constitute
the "isotropy subalgebra," and their exponentials are the "isotropy subgroup." The
reachable set from p is Evp (f)((X, K)). The Lie algebra rank condition says that
(X) "acts transitively on M near p." Hence p will be an interior point of the reachable
set if the interior of S(X, K) intersects the isotropy subgroup.

The preceding formal considerations are not rigorous, because (X) is not a true
Lie group and, as explained above, Ev (f) is not well defined on (X). In order to
obtain a rigorous local controllability theorem one has to consider the nilpotent
approximations G(X) to G(X). The G(X) are true Lie groups, with Lie algebra
L2V(X), and the subsemigroups Sm(X, K) represent the nilpotent approximations to
(X, K). Pursuing the analogy with our earlier discussion, we may think of LR (f, p)
as the "isotropy subalgebra" corresponding to the "action" of GIn(X), and of
HV(f, p)- exp (LRv (f, p)) as the "isotropy group." If N is large enough (so that

Ev (f)(L(X)) is the whole tangent space TpM), then the "action" of Gv(X) on M
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 171

is transitive. So we might expect to be able to prove that, if the interior of Sv(X, K)
intersects H, then p is in the interior of the reachable set from p. Also, it should
follow that, ifN(X, K) fq HN contains points reachable from the identity in arbitrarily
small time, then (M, f, K) is STLC from p. However, this reasoning is not valid, since
Ev (f) need not be a true Lie algebra homomorphism, LRs (f, p) need not be a Lie
subalgebra of L (X), and G (X) does not really act on M. If S v (X, K) fq H (f, p)
and we write S=exp (Z), then Ev (f)(Z)=0, and so Evp (f)(Z)-0. Therefore
exp (Z) is equal to the identity map plus a series of differential operators that vanish
at p. However, there is no reason for exp (Z) to be the series of a control u(. ). What
can be said is that exp (Z)= Sers (u(.)) for some u(. ). But then Ser (u(.)) will not
necessarily be equal to exp (Z), although it will be equal to exp (Z) up to terms of
degree N. So u(. will not necessarily steer p to p. However, it will steer p to a point
q which is close to p. If U is a neighborhood of Z in LN(X), and exp (U) is small
enough so that exp(U)_S(X,K), then one can choose a u’(.) such that
Ser (u’(’))=expv (Z’) for each Z’ U. Then the controls u’(.) will steer p to a
neighborhood V of q. If U is large enough, then we may expect V to be such that
p V. To make all this rigorous, we have to be able to choose u’(. in a continuous
fashion as a function of Z’. This requires that we confine ourselves to neighborhoods
U such that, if W=exp (U), then there is a map that satisfies the conditions of
Corollary 3.3. So we define a normal neighborhood of a point S V(X, K) to be an
open subset W of GV(X) such that there exist F, k, for which the conditions of
Corollary 3.3 hold. Then Corollary 3.3 simply says that every point of S(X, K) has
a normal neighborhood. The sufficient condition for STLC from p will then say that,
if (X, K)f3 H(f, p) contains points St reachable from the identity in arbitrarily
small time t, then (M, f, K) is STLC from p, provided that N is sufficiently large, and
that these points have normal neighborhoods whose size does not decrease too fast as

0. It will be clear from the proof that it is not necessary to have a lower bound for
the size of the neighborhood in all directions, but only in directions transversal to
HV (f, p). To make this precise, let (E, , Ek) be a finite sequence of elements
of Lv(X), and let Z LN(X). We define, for r > 0

(3.19) B Z, r Z+ xiEi Y. xi=r
2

i=1 i=1

(B(Z, r) is the -ball of radius r and center Z. We will only use this definition for
sequences such that El,"’, Ek are linearly independent.)

Also, we define a function T:A(X) R by letting T(S) be the coefficient of
Xo in $. (In particular, if S=SerN (u(.)) for some control u(.), then TV(S) is the
terminal time of u(.).) We then have:

THEOREM 3.4. Let (M, f, K) be a control system, and let p M. Assume that K is
a bounded set. Let N be a positive integer, and let ; (El,..., E,) be a sequence of
elements of LS(X) such that (Evp (f)(E1),’." ,Evp (f)(En)) is a basis of the tangent
space TpM. Assume that there is a sequence ofpoints Sj,j 1, 2,..., such that:

(i) Sj ;S (X, K) fqH(f, p) for all j,
(ii) TN(Sj)O asj-o,
(iii) IfSj --expv (Z), then there are normal neighborhoods W ofSj, and a constant

a > O, such that

(3.20) logN W;_ B(Z, a[Ts(S;)]v)

for all j. Then M, f, K) is STLC from p.
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172 I-I. j. SUSSMANN

Proofi Let pj TV(Sj). For each j, choose a K-sequence F, a positive integer k,
and a real-analytic map " W R such that

(3.21) Ser ({F, Og(S)})= S

whenever S
Choose coordinates on a neighborhood of p such that p becomes (0,..., 0)

and the vectors Evn (f)(E) are the members e of the canonical basis of ". For each
control u(. ), let (u(. )) be the point to which u(. steers p (i.e. (u(. )) x(T), if
u(.) is defined on [0, T], and x(.) is the trajectory for u(.) such that x(0)=p).
Proposition 4.1 of [25] implies that the series Evp (f)(Ser u(. )) gives an asymptotic
expansion for n(u(. )) in the following sense: if
then there are constants fl and times z such that

(3.22) ))- Evp (f)(Ser (u(.

for all v and all controls u(.) such that T(u(.)) z. (Here Evp (f)(Ser (u(.))) is a
finite sum of paial differential operators evaluated at p, and so Evp (f)(Ser (u(.)))
is a finite sum of numbers, namely, the results of applying those paial differential
operators to . The result from [25] gives constants fl that also depend on a bound
A for the controls, but here we are assuming that K is bounded, so that fl only
depends on v.)

Inequality (3.22) clearly holds for vector functions as well, so we can apply it to
the identity map " . From now on, denotes this map. Therefore (p(U(. ))
p u(.))), and so (3.22) becomes

(3.23) ))- Evp (f)(Ser (u(.)))

Now define maps from the closed unit ball B of n into M, by

(3.24) (x, x)= ({F, (exp (+ap ,, x,E,)))).
e definition is possible because + apE, x,E, is in B(, ap), and so its

exponential in An(x) is in . By construction, (x,..., x,) is reachable from p,
by means of the control

(3.25) U,x,,...,(" {F, (exp (+ap , x,E,)) }.
e truncated series Ser (u,,..., (.)) is then

and so the terminal time T(u,,,...,(.)) is equal to r(Ser (u,,,....,(.))), i.e.

i=l

where 0i is the coefficient of Xo in Ei. In particular, all the points/z(xl,’’’, x,), for
(Xl,’’’, x,) B, and fixed j, are reachable from p in time not greater than &pj, where
t is some fixed constant which does not depend on j. Since p 0 as j o, our theorem
will be proved if we show that/z(B) contains a neighborhood of p for sufficiently
large j.
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 173

In view of (3.23), we have

(3.26) < N+lpN+I;
i=l

provided that j is large enough, so that
For Q LN (X), define

1Qk"(3.27) ex--- (Q) .k=0

N Lk’hm(x), but the powers Qk are(Here we identify LV(X) with the subspace k=l
computed in L(X), so that e-u (Q) is allowed to contain terms of degree greater than
N.) We claim that all the coefficients of the finite series

are bounded by a fixed constant times pfq+lo TO see this, observe first that, if we write

(3.28) Z Z zX,,
I

then z 0 for III> N, and there is a constant c such that Iz[ <= Cpxl for all j, I. (Here
III is the length of the multiindex I, i.e. the degree of the monomial Xx. The first
assertion follows because ZL(X). The second one holds because exp (Z)=
Ser (u(.)) for some K-valued control u(. with terminal time p. Since the coefficients
tr; of Ser(u(.)) are iterated integrals, as shown in (3.12) and (3.13), they satisfy
bounds Irl <= constant x pl. Similar bounds then hold for the coefficients of the series
log (Set (u(.))), and for those of its truncation Z N(log (Ser (u(.))).) The
coefficients of apfv i= xiE also satisfy a similar bound, since they all contain a factor
p, and those of degree > N vanish. So the coefficients of

also satisfy these bounds, and then the same is true for those of the difference of these
two series. However, the coefficients of this difference vanish whenever III--< N. Hence
they are bounded by a constant times

It then follows that (3.26) remains valid (possibly with a different constant in
the right side) if "exp," is replaced by "e--x." Now "Cg-fflV (Z + ap .,"__ xiE) can
be written out by applying (3.27) and then expanding the powers of
Z + apf .,= xE. This leads to a finite sum of terms of the following five kinds:
(i) the term apJv= xiE, (ii) powers of Z, (iii) products of at least one Z factor
and at least one apjv y,= x,E,, (iv) powers of ap]v ,= x,E, other than the first power,
(v) the identity.

When evaluated at p, all the terms Ev (f)(Z) vanish, because Z LR (f, p). The
terms of type (iii) are O(pf+), because Z is O(pj). The terms of type (iv) are also
O(pV+l). Hence, modulo O(p+i), only the terms of types (i) and (v) count. So we
get the bound
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174 H.J. SUSSMANN

for some constant y. Then (3.29) implies (using thefacts that Evp (f)()$ $(p) p 0,
and Evp (f)(E,)$ e,ck e)

II   xl, o,
+1

Let

1
(3.31) lj(Xl Xn) -"’-’-- ldl,j(X1, ", Xn).

Otpj

Then/zj(B) contains a neighborhood of 0 if vj(B) does. It follows from (3.30) that

(3.32) x,)-(Xl,’.’, xn)ll _-< constant x p.

Therefore the v are continuous maps from to Nn that converge uniformly to
the identity map of as j- oo. This implies that v() contains a neighborhood of 0
for large enough j. The proof is then complete.

Theorem 3.4 gives a sufficient condition for local controllability, but not one that
is easy to check in practice. The next two sections will be devoted to providing more
easily checkable conditions. Here we will just give a simple example that follows
directly from Theorem 3.4.

THEOREM 3.5. Let M, f, K) be a control system, and let p M. Let N be a positive
integer such that Evp (f)(Lc(X)) TpM. Assume that ;V(X, K) contains an element
S =exp (Z) such that all the homogeneous components of Z are in LR (f, p). Then
M, f, K) is STLC from p.

Proof. For each p > 0, let A(p) be the automorphism of A(X) which sends X to
pX for i= 0,. ., M. Then A(p) gives rise to an automorphism A(p) of A(X), defined
by sending a series S =o S., with S. aJ’hm(x) to the series

(3.33) z(p)(S)
j=0

Clearly, ,(p) induces an automorphism of L(X), (X), and (X). Moreover, since
A(p) maps AN(X) to (X), it induces an automorphism AN(p) of AC(X) and, in
particular, an automorphism of G (X) and one of L (X).

Moreover, if 0< t9--< 1, then (p) maps $(X, K) into S(X, K), and AC(p) maps
S(X, K) into SN(X, K). (Indeed, if t- S(t), 0<= t<= T, is a solution of (3.11) corre-
sponding to a K-valued control t-u(t)=(ul(t),..., u,,(t)), then r,(p)($(r/p))
is a solution of (3.11) on the interval [0, pT], corresponding to the control -- u(’/p).)

Now suppose that $ is an element of N(x, K) such that S =expN (Z), where

(3.34) Z- Z, Zj L’hm(x),
=1

and Z LR (f, p). Pick g (El,. , E,) such that
(a) the Ei are members of LN(x),
(b) each Ei is homogeneous of degree 0i (with 8 =< N),
(c) Evp (f)(E1),’’’, Ep(f)(E,) form a basis of TpM.
Since S N(X, K), there exists a normal neighborhood W of S. If we let

S=AC(p)(S), W =AN(p)(W), then W is a normal neighborhood of S. Let c>0
be such that expN(Z+=lYE) W whenever ]yi]-<t. Let Z=A(p)Z. Then
eXpN (Z +--1 P’YEi) W, whenever lye] _-< &. Since 0 _-< N, it follows that

(3.35) B,(Z, dqaN)
_
1OgN (Wo)

whenever 0 < p -<_ 1.
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 175

Since Z LJ’hm(x) [ LR (f, p), it follows that Zp LR (f, p) for all p. Finally, it
is clear that TN (S,) pc, where c TN (S). Therefore

(3.36) B(Z, a[ T (S)]S)
_
logs W)

for 0<_-p <_-1, if a tc-. So the conditions of Theorems 3.4 hold, and our desired
conclusion follows.

The preceding result is too weak for applications. In the following section we will
strengthen it in two ways. First, the requirement that each homogeneous component
Z of Z be a Lie relation at p will be replaced by the weaker condition that Z be
equal to a Lie relation plus an element of lower degree. Second, the "degree" will be
allowed to be a more general one, arising from a one-parameter group of dilations
which is not necessarily the family {A(p). p > 0} considered in the proof ofTheorem 3.5.

4. Dilations. We now define the concept of a "group of dilations," and prove a
generalization of Theorem 3.5.

If V is a linear space over the reals, a group ofdila,tions of V is a mapping p --> A(p)
that assigns to every real p > 0 a linear endomorphism A(p) V--> V, in such a way that

(DILl) A(1) identity,
(DIE2) A(pl)A(p2)= A(plp2) for all Pl, Pl,

(DIL3) V has a direct sum decomposition

(4.1) V=<) V

such that the subspaces V are invariant under the A(p), and the action of A(p) on each
V is given by multiplication by p’ for some a >= O.

The decomposition (4.1) is clearly unique if, in addition, we require that a Ok

whenever j k. In this case, the V are referred to as the homogeneous components of
V with respect to A. If v V is such that v V for some j, then v is said to be
A-homogeneous. If v 0, then V is uniquely determined by v, and the corresponding
a is the A-degree of v. More generally, any v V can be expressed in a unique way
as a sum j v, v V. The A-degree ofv is the largest a such that v 0, and is denoted
by dega (v).

If A is a group of dilations of V, then A gives rise to groups of dilations AA of
A(V), the free associative R-algebra generated by V (i.e. the tensor algebra over V)
and AL of L(V), the free Lie algebra generated by V. In both cases, the new group of
dilations consists of automorphism of the algebraic structure, which in addition leave
invariant the usual homogeneous components of A(V), L(V) (i.e. the homogeneous
components with respect to the groups of dilations induced by {Ao(p): p > 0}, where
Ao(p) V--> V is multiplication by p).

A group of dilations A of V will be called strict if it has no component of degree
zero. If A is strict, then aL is also strict, and AA is strict on Ao(V), the set of elements
of A(V) with no constant term. (But A(p)(1) 1 so AA is not strict on A(V).)

We will use ,(A) to denote the infimum of the degrees of the homogeneous
components of A. Then v(A)= v(A) for every A. If V is finite-dimensional, then the
infimum considered above is actually a minimum, and A is strict if and only if ,(A) > 0.

In the particular case when V= Ll’hm(x) (i.e. the linear span of Xo,"" ", Xm),
we let Al,m(p) V--> V be multiplication by p as above. Let A be any group of dilations
of V. Then A gives rise to groups of dilations AA, A of A(X) and L(X). Any group of
dilations of A(X) or of L(X) which arises in this fashion from a strict group of dilations
of V will be called an admissible group of dilations. (Clearly, a group of dilations A#

of L(X), is admissible if[ A# is strict and the A(p) are automorphisms which leave the
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176 H.J. SUSSMANN

usual homogeneous components invariant. If A# .is a group of dilations of A(X), then
A# is admissible if and only if A# consists of automorphisms which leave the usual
homogeneous components invariant, and the only elements of A#-degree zero are the
constants.)

If A is a strict group of dilations of Ll’hm(X)--SO that A gives rise to admissible
groups of dilations ZA, AL-- we will also refer to A itself as an admissible group of
dilations.

In particular, the groups that arise from A1 denoted by AA AL
1.,,, 1.m, are clearly

admissible.
If AA is any admissible group of dilations of A(X) as above, arising from a group

of dilations A of Ll’hm(x), then every AA(p) ives rise in an obvious way to an

automorphism Aa(p) of A(X). The Aa(p) map L(X) to (X) and therefore G(X) to
G(X). Since Aa(p) maps An(X) to An(X) for each N, there are induced automorphisms
AA’N(p) of the algebra An(X), which gives rise to automorphisms of the Lie algebra
LN(X) and of the Lie group GN (X).

We will say that A is compatible with the semigroup S(X, K) if

(4.2) ZA(p)(X, K)
___
(X, K) for every p _-< 1.

Compatibility can be described more directly as follows. The map A(p) takes
Ll’hm(x) into itself. For uR", u=(ul,’’ ", urn), let X(u) Xo+"=l uiXi. If uK,
then exp (X(u)) (X, K). Therefore A(p)(exp (X(u))) must belong to (X, K), if A

is compatible with S(X, K) and 0<p -< 1. That is, exp (,A(p)(X(u))) (X, K) and
so exp (AA(p)(X(u))) Ser (v(’)) for some v(" q/,,(K). Let T be the terminal time
of v(.). Then T cannot equal zero for, if T 0, then we would have Ser (v(.))= ],
and so zA(p)(X(u)) =0, contradicting the fact that X(u)0 and ,a(p) is an auto-
morphism. It follows from the construction of Ser (v(.)) that the coefficient of Xo in
Ser (v(.)) is precisely T. Moreover, the coefficient of Xo in exp Z is the same as the
coefficient of Xo in Z. So

(4.3) ,A(p)(X(u))= TXo+ E a,Xi,
i=1

for some choice of (al,. ", am) R". If we let/3 a/T, we see that

^A(4.4) A (p)(X(u))= TX(fl).

Let v"[0, T]R be such that v’(t)=fl for 0-_<t-<T. Then Ser(v’(.))=
exp (TX(fl)). Since Ser is injective as a map from q/m into t(X), we conclude that
v(.)= v’(.). Since v(.) is K-valued, we conclude that/3 K. Hence A(p)(X(u)) is
of the form TX(fl) for some T>0 and some /3 K. Conversely, if {A(p)} has the
property that A(p)(X(u)) is of the form TX(fl) for some T>0. ticK, whenever
0<p<_-I and ueK, then it is easy to see that A(p)(X,K)_S(X,K) whenever
0<p_-<l.

To see this, write

(4.5) A(p)(X(u))= E O,(u)Xi
i=0

for u ". Then

A(P)(X0) Z 0,(0)X and
i=0

)a(p) uX E [0,(u)- 0,(0)IX,,
j=l i=0
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 177

so that each of the functions u Os(u)-0s(0) is linear. Moreover, Oo(u)>0 for every
us K and, if we define fls(u)= Os(u)/Oo(u) for i= l, m, ugm, Oo(u)O, then
we have /3(u) K whenever u s K, if fl(u) (/31(u), ’’, fl,(u)). Let $ S(X, K).
Then S= S(T), for some/(X)-valued function t S(t), 0<= t<= T, that satisfies

(4.6) (t) S(t) Xo+ E us(t)Xs
i=1

where the us are Lebesgue integrable functions such that (Ul(t),’’ ", um(t))K for
^Aall t. Let S#(t)=A (p)S(t). Then

#(t) S#(t) Oo(u(t))Xo+ 20i(u(t))Xi
i=1

(4.7)
=S#(t) Oo(u(t)) Xo+ 2 fls(u(t))Xi

i=1

Let r(t) =to Oo(u(s))ds. (The integral exists because u(.) is Lebesgue integrable and
00 is affine linear.) Since Oo(U(t))>O for 0_< t<= T, z is a strictly increasing function
of t. Let S*(-)= S#(t), if z= z(t). Then

(4.8) *(z) S*(z) Xo+ 2 vs(’)Xs
i=l

where the dot now denotes differentiation with respect to z, and vs(-)=fls(u(t))
whenever z= z(t). The vector-valued function v(.) is Lebesgue integrable. (Notice
that fl(u(.)) might fail to be integrable, since we do not know that 0o(’) is bounded
away from zero. However, v(. is necessarily integrable because, whenever b is a
strictly positive integrable function on [0, T], and -(t) o b(s) ds for 0 -< <- T, then
the function g:[0, -(T)] R defined by g(-(t))=f(t)/qb(t) is integrable whenever f
is integrable.) Since (Vl(Z)," , vm(z)) K for every z, we see that S*(z) g(X, K).

^A ^AIn particular, since S*(z(T)) S#(T) A (p)S, we see that h (p)S S(X, K). There-
fore ,a(p) maps (X, K) to/(X, K). So we have shown:

LEMMA 4.1. Let A={A(p)... 0<p<} be a one-parameter group of dilations of
V homL (X), and let AA, AA be the corresponding groups of automorphisms of
A(X),A(X). Then A is compatible with the semigroup S(X, K) if and only if A(p)
(Xo+Es=l usXs) is of the form T(Xo+Y,__ v,X) for some T>0, (Vl,’’’, Vm) K,
whenever 0 < p <- 1 and ul , Urn) K.

If ZA is compatible with (X, K)then ?a(p) gives rise to a map A(p)" (X, K)
(X,K) whenever 0<p-<l and hence to a map AK(p)’allm(g) ?/re(K), since
’lira(K) is identified with S(X, K) by means of the bijection Ser. An explicit description
ofthis map follows from the reasoning preceding the statement ofLemma 4.1. Ifwe write

(4.9)

for ueN", then the control v(’)=A(o)(u(’)) that corresponds to a given u(.)e
//re(K), defined on an interval [0, r], is obtained from the K-valued map - (u(t)),
0_< t<_- T, by reparametrizing time, using -= r(t)=Io O(u(s)) ds as the new time
parameter. (Here (u) (fir(u),. ., ,,,(u)), ’(u) Of(u)/O(u).) This explicit
description implies, in particular, that A (O) is continuous with respect to some natural
topologies on (T) (for example, L1, pointwise convergence), and that A(0) maps
piecewise constant controls to piecewise constant controls. More precisely, if u(. is
a piecewise constant control whose values are u, u, on intervals of length
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178 H.J. SUSSMANN

tl, k, then A(p)(u(. )) is piecewise constant with values /)1,. /)k on intervals
of length .1,... rk, where vi= flP(u ), and -= Og(u)t i.

This implies, in particular:
LEMMA 4.2. If A is an admissible group ofdilations ofLl’hm(x), which is compatible

with K, andW is a normal neighborhood of an S,rC(X, K), then AA’V(p)(W) is a
normal neighborhood AA’C(p)(S) for every pc (0, 1].

Now suppose that an (rn + 1)-tuple f (fo,’",f) of smooth vector fields on a
manifold M is given, as well as a point p M. We can then define No(f, p) to be the
smallest integer N such that

(4.10) Evp (f)(L(X))= TpM.

If, in addition, an admissible group of dilations A on Ll’hm(x) is given, we can also
define vo(f, p, A) to be the largest of the A-degrees of all the elements of LN(r’P)(X).

An element Z of L(X) is said to be A-neutralized for f at p if each A-homogeneous
component Z of Z is the sum of an Rj L(X) which belongs to LR (f, p) and a
Q L(X) such that

(4.11) dega (Q) < dega (Z).
Our generalization of Theorem 3.5 is then the following
THEOREM 4.3. Let (M, f, K) be a control system, and let p M. Let A be an

admissible group of dilations of Ll’hm(x) which is compatible with S(X, K). Let N be a
positive integer that satisfies
(4.12) N >- No(f, p),

and

(4.13) Sv(A) _>- o(f, P, A).

Assume that there exists an element Z of Lv(X) which is A-neutralized for f at p and
satisfies exp (Z) r(X, K). Then (M,f, K) is STLC from p.

Remark. Theorem 3.5 is a particular case of this result. Indeed, to get Theorem
3.5 it suffices to let A be the group of dilations defined by A(p)(P) pP for P Ll’hm(x).
A Z that satisfies the condition of Theorem 3.5 is clearly A-neutralized for f at p.

Proof. Let SV(X, K) be such that S=exprq (Z), Z LN(X), and Z is A.

neutralized for f at p. Let (El,’’’, E,) consist of elements of Lrqo(r’P)(X) which
are A-homogeneous of degrees r,..., r, and are such that the vectors EVp (f)(E),

1,. , n span TpM. (Then, in particular, r -<_ Vo(f, p, A) for j 1,. , n.) Let W
be a normal neighborhood of S. Then we can pick a neighborhood Wo of S and a

fl > 0 such that eXps (Z’+=1 yE) W whenever exprq (Z’) Wo and lYyl -< fl for
j=l,...,n.

Since Z is A-neutralized for f at p, we can write

(4.14) Z=,Z,

where the Zi are elements of L(X), are A-homogeneous of degree 0 (with 0 0 if
ij), and satisfy

(4.15) Z R, + Q,k,
k

where the Qik are A-homogeneous of degree r/k, the R belong to LR (f, p), and the
T]ik satisfy ik Oi"
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 179

NIt then follows that the Zi belong to Ln(x), for we can write Z Ei=l zj, with
ZJs LJ’hm(x), and then each Z is a sum of A-homogeneous component Z],, which
must necessarily belong to L’hm(x). The Zi are then obtained by grouping together
all the Z], that have the same A-degree, and therefore belong to Ln(X), as stated.

The Qk can also be assumed to belong to Ln(X). Indeed, suppose that one Qk
was not in LN(X). Since Qk is A-homogeneous, we must have

(4.16) dega (Qik)>= (N+ 1) x v(A).

On the other hand, we can write

(4.17) Evp (f)(Q,k) = q,k EVp (f)(E)

for appropriate coefficients qikl. Therefore

(4.18) Qik R,k + ., qikE
where Rik LR (f, p). The qikE are A-homogeneous of degree try. Since

(4.19) cr _-< vo(f, p, A)<_-(N + 1)v(A)<_- r/,k < 0,,

we can replace each Qik that occurs in (4.15) but does not belong to Ln(x) by the
sum of the qikE, and add Rik to Ri. This leads to an expression for Z for the form
(4.15), with all the Q,k in Ln(x).

It then follows that the Ri are in Ln(X) as well. Define

(4.20) 2, Z-Y p’-’’"O,k.
k

Then expn (,) Wo.. if p is small enough. Therefore, if p is small, W is a normal
neighborhood of expn (Zo) such that

(4.21) expn (’o+ Y’E’)
whenever ly, l<= for i= 1,..., n. Let Z, A(p)(,). Let W, A(p)W. Then, if p is
sufficiently small, W, is a normal neighborhood of eXpN (Z,) such that

(4.22) exp (Zo+
whenever ]yl--</3 for 1,. ., n. Let

(4.23) S expn (Zp).

Then

(4.24) logs (W,)
_
B(Z,, flpv(r’P’A)).

On the other hand, S, satisfies

(4.25) Tn(S,) <- cpa) for 0 < p _-< 1,

for some c > 0. (This is because Z, is a sum of A-homogeneous components, each of
which has A-degree at least equal to u(A), and coefficients that are bounded as p- 0.
Therefore all the coefficients of A(p), are bounded by a constant times pa). In
particular, this is true for the coefficient of Xo, and so (4.25) follows.)

From (4.25) we conclude that

(4.26)
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180 H.J. SUSSMANN

and so

(4.27) log (W)_ B(Z, a[Tv(S,)]v)
if p is sufficiently small, and a tic-.

Finally, we have

0’R.

Therefore Z LR (f, p). Hence all the hypotheses of Theorem 3.4 are satisfied,
and the desired conclusion follows.. Invariant elements. Theorem 4.3 says that (M, f, K) is STLC from p iL for some
suciently large N, (X, K) contains an element S such that log (S) is A-neutralized
for f at p. In order to be able to use this result, we need to know that (X, K)
necessarily will contain elements of some very special kind, for then STLC will follow
ifwe hypothesize that these special elements are exponentials of A-neutralized members
of Lm(X).

To get these "special elemems" we exploit a general result about existence of
points that are invariant under ceain finite groups of pseudoautomorphisms (cf. 2
for the definition of "pseudoautomorphism").

Let L be a finite-dimensional, nilpotent Lie algebra over , and let G be its
corresponding connected, simply connected Lie group. Then the exponential map
exp" L G is a diffeomorphism onto. Therefore, if A" L L is an arbitray map, then
A gives rise to a map ’GG, defined by letting

(s.1) X(exp (2))=,xp

PROPOSITION 5.1. Let L be a finite.dimensional, nilpotent Lie algebra over , and
let G be the corresponding connecte6 simply connected Lie group. Let A be afinite group
of pseudoautomorphisms of L, and let A {’A A} be the group of bijections of G
induced by A. Let S be a nonempty subset of G which is closed under multiplication.
Suppose that eoery maps S into & en S contains an element s such that (s)= s

#r all A A.
00 Sta with an element Sl S, and write s =exp (b), where b L. Let

A={A,... ,A}, with A# A whenever i#j. Define s2 by

en s2 S, because (s) S for each and S is closed under multiplication. On the
other hand, we have

(s.3) X(s,) =exp ((b,)) or;= 1,..., n.

erefore the Campbell-Hausdorff formula gives

(5.4) s2 exp (z2 + b2)
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 181

where

(5.5) z ;t(b) +... + x.(b)

and b2 ILl2. In view of (5.5), z2 satisfies A(z2) z2 for every A cA. Assume we have
proved, for some k, that there exists an Sk $ which is of the form exp (Zk + bk), with
A(zk) zk for all A A, and bk [L]k. Then we can define sk+l by

(5.6) Sk+l AI(Sk)A2(Sk) A,(Sk)

and conclude from the Campbell-Hausdortt formula that

(5.7) Sk+l =exp (Zk+l + bk+),

where

(5.8) z+ E X,(z + b)
i=1

and bk+ is a linear combination of terms, each of which is a Lie bracket of two or
more elements of L of the form Aj(Zk + bk) for some j. But Aj(Zk) Zk and, if we let

bk A(bk), we have bk ILlk, because bk ILlk and A is a pseudoautomorphism. So
the brackets that appear in bk+ are brackets of two or more terms of the form Zk + bk.
Now [zk + bik, Zk-- bjk] "-[Zk, bjk]d-[bik, Zk]-l’[bik, bjk], and so [zk 4r- bik, Zk t" bjk] ILlk+l.
So bk+l ILlk+l. This proves, by induction, that an Sk S of the desired form exists
for every k. Since L is nilpotent, we can take k such that ILlk-- {0}. Then bk 0, and
so, if we let s Sk, the condition that A(s)= s holds for all A e A.

6. End of the proof of Theorem 2.4. Assume that the conditions of Theorem 2.4
hold. Pick N so large that (4.12) and (4.13) hold. The group A obviously induces a
group A of pseudoautomorphisms of the Lie algebra Lv(X). The maps ], for A e A,
clearly map (X, K) into itself. The set ,(X, K) is nonempty and closed under
multiplication. Proposition 5.1 then implies that (X, K) contains an element S
expv (Z), where z e L(X) is Afixed. Then Z is A-fixed, and therefore Z is A-
neutralized for f at p. Theorem 4.3 then says that (M, f, K) is STLC from p.

7. Applications. In all the applications discussed here, A will be a group obtained
from a group of automorphisms Ao of L(X), by adding to it the "time reversal" map.
Precisely, let A’A(X)->A(X) be the linear map which sends each monomial

XX:. X to the "reversed" monomial X. XX. Then qlA is an antiautomorph-
ism of A(X) (i.e. qA(pQ)=-[A(Q)qA(p) for all P, Q in A(X)). It then follows easily
that qA([p, Q]) [-[A( Q), ql-A(p)], i.e.

(7.1) -A([p, Q])= _[ql-A(p), qA(Q)],
for P, Q in A(X). Then ql"A maps L(X) to L(X), and

(7.2) ’(P) (--1)I+kP for P Lk’hm(x),
where ql denotes the restriction of I-A to L(X).

It is clear that ql is a pseudoautomorphism of L(X). On the other hand ql"A gives
rise in an obvious wayto a map -A. ,(X) -> (X). Clearly, -A(pk) pk ifP e A’hm(x).
Therefore

(7.3) "[’A(exp P)= exp P

if P s A’hm(x). So, if P,""" ,, Pk are elements of L’hm(x), we have

(7.4) "A(exp (P1) exp (Pk))=exp (Pk) exp (P).
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182 H.J. SUSSMANN

This implies that, if u(. is a piecewise constant K-valued control, defined on
[0, T], then

(7.5) A(Ser (u(.)) Ser (urev(" ))

where u (t) u(T- t) for 0=< t=< T. By an elementary continuity argument, (7.5)
holds for all controls u(.). Therefore

(7.6) CA((X, K))= (X, K).

On the other hand, ql gives rise to a map ql L(X)--> L(X), which is obviously equal
to the restriction of fA to L(X). If P is any element of Ao(X), then -a(pk)__ [-A(p)]k
for every k, and therefore

^A(7.7) "A(exp (P))= exp (ql- (P)).

In particular, if P L(X), we get the equality

(7.8) A(exp (P))= exp ((P)),
which implies

(7.9) ’A((X)) (X).
In the terminology of 2 (cf. espec}ally (2k7)), (7.8) shows that the restriction

of --A to G(X) is precisely the map ql-#: G(X)--> G(X). Hence (7.6) says that ql-# maps
S(X, K) to S(X, K). So we have proved:

LEMMA 7.1. q]- is an input symmetry.
Now suppose that Ao is a finite group of graded linear maps from L(X) to L(X).

(A linear map X L(X) --> L(X) is graded if ,X maps LJ’hm(x) into LJ’hm(x) for each j.)
Then every A Ao commutes with 7. Since 31-2 is the identity map, the set

(7.10) A AoLI {AqI: )t e Ao},

is a finite group of pseudoautomorphisms. If Ao is a group of input symmetries, then
A is a group of input symmetries as well. We shall refer to the input symmetry ql as
"time reversal," and to the group A defined by (7.10) as "the augmentation of Ao by
time reversal."

Let us call an element of L(X) totally odd if all its homogeneous components
have odd degree. Then it is clear that the totally odd elements of L(X) are precisely
those P L(X) that satisfy ql-(P)= P. If Ao is a finite group of graded linear maps of
L(X), and A is its augmentation by time reversal, then the A-fixed elements of L(X)
are precisely those P L(X) that are Ao-fixed and totally odd. So we can conclude
from Theorem 2.4 the following:

COROLLARY 7.2. Let (M, f, K) be a control system, and let p M. Assume that f
satisfies the LARC at p, and that there exist (a) an admissible group of dilations A of
tl’hm(x) which is compatible with (X, K), (b) a finite group Ao ofgraded linear maps
from L(X) to L(X) that are input symmetries, such that every totally odd Ao-fixed element
of L(X) is A-neutralized for f at p. Then (M, f, K) is STLC from p.

7.1. Symmetric systems. A symmetric system is a family o//. { V: I} of vector
fields on a manifold M, such that for every i I there is a j I such that V V. It
is well known that, if a symmetric system satisfies the LARC at p, then the system is
STLC from p. For completeness, we show that our theorem implies this result. First,
it is clear that we can pick vector fields fl, ",fm in this family such that the m-tuple
(fl,..., f,,) satisfies the LARC at p. Then we can let fo 0. Also, we take K to be the
set of all points of R" of the form (0, 0, , 0, + 1, 0, , 0). We let A be the group
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 183

of dilations such that A(p)(p) pp for P Ll’hm(x), so that the A-degree is just the
ordinary degree. We let Ao be the group of automorphisms of L(X) generated by
hi," , Am, where hi is the automorphism that takes X to X for j i, and
Since the hi commute, Ao is finite. The Ao-fixed elements of L(X) are those that are
linear combinations of brackets where each Xi, 1,. , m, occurs an even number
of times. Such a bracket cannot be totally odd unless it contains Xo. But then, when
the bracket is evaluated by plugging in thef for the X, the result must be zero, because
fo 0. Hence every totally odd Ao-fixed element of L(X) is actually in LR (f, p), and
therefore is A-neutralized for f at p. So we can apply Corollary 7.2 and conclude that
E (M, f, K) is STLC from p. Since every trajectory of E is a trajectory of OF, the
small-time local controllability of OF follows.

7.2. The results of Brunovsky, Crouch and Byrnes. In [3], Brunovsky defined an
odd family OF { V" I} of vector fields on a symmetric neighborhood M of 0 to be
a family such that for every i I there is a j I such that V(-x)=- V(x) for x M.
He then proved that, if OF is odd and satisfies the LARC, then F is STLC from 0.
Crouch and Byrnes [5] provided a coordinate-free generalization of this result. Suppose
that Y { V" I} is a collection of vector fields on a manifold M, and p M. Suppose
that Y satisfies the LARC at p. Assume that there is a finite group Ao of diffeomorphisms
of M such that

(i) each A Ao maps p to p,
(ii) each A Ao maps each V to some V in the family,
(iii) the differentials at p of the maps A Ao have no common invariant half space.
The result of [5] then says that OF is small-time locally controllable from p.

Brunovsky’s theorem is a particular case of this, obtained by letting Ao consist of the
identity and the map A’x -x. (If V(-x)=- V(x), and A, denotes the differential
of A, so that A,(v)=-v, then A, maps V to V.)

We show that the result of [5] is a particular case of our Corollary 7.2. Let
fl,""" ,f, be members of the family OF, chosen so that" (i) (fl,""" ,f,,) satisfies the
LARC, (ii) f f whenever ij, (iii) the set {fl,""" ,f,} is mapped to-itself by the
maps A,, A Ao. Letfo 0, f (fo," , fm). Then consider the system (M, f, K), where
K {0} tO/, and/ is the set of all vectors of" of the form (0, 0,. ., 0, 1, 0,. ., 0).
If E=(M, f, K) is STLC from p, then OF is. (Indeed, let q be reachable from p by a
trajectory of that corresponds to a piecewise constant u(. )’[0, T]- K. Then q can
also be reached by a trajectory that corresponds to a K-valued control, in time T’-< T,
by simply eliminating from u(.) all the pieces for which u(.) has the value 0.) The
group Ao acts on L(X) for, if A A0, then A. permutes the elements of {fl,... ,f,},
and so we can define an automorphism g(A) of L(X) by

(7.11) g(A )(Xo) Xo
and

(7.12) g(A)(Xi) X if A.(f)=f.

If 7/" is any element of L(X), it follows from (7.11) and (7.12) that

(7.13) Ev (f)(g(A )( V)) ,.(Ev (f)(V)).

In particular, this implies that, if V is Ao-fixed, then the vector Evp (f)(V) is invariant
under the differentials at p of all the maps A Ao. Therefore Evp (f)(V)=0, and so
V LR (f,p).
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184 H.J. SUSSMANN

So, if Z is any group of dilations whatsoever, all the Ao-fixed elements of L(X)
are A-neutralized for f at p, and so E is STLC from p.

7.3. The Hermes condition and some generalizations. Consider a system

(7.14) =fo(x)+ E u,A(x), lu, l=<l,
i=1

and assume that p is an equilibrium point of fo, i.e. that fo(P)= 0. We let Ao be the
group of automorphisms of L(X) generated by trl,’", tr, and all the
where: (a) Sm is the group of permutations of {1,..., m}, (b) for r Sin, is the
automorphism of L(X) which maps Xo to Xo and Xi to Xi) for i= 1,-.., m, (c)
is the automorphism that sends X to X for j i, and Xi to -Xi. It is clear that Ao is
finite. The Ao-fixed elements are those that are linear combinations of elements of the
form a(B), where B is a bracket of Xo,"’, Xm, and a is the Ao-symmetrization
operator, i.e.

(7.15) a(V) Z A(V).
AAo

It is clear that a(V)=O, if o’(V)=-V for some i. Therefore, a(B)=O if B is a
bracket in which one of the X, > 0, appears an odd number of times. Hence, in order
to find the Ao-fixed elements, we may limit ourselves to considering the symmetrizations
of brackets B where, for 1,. , m, X appears an even number of times. For such
a B, one may use the symmetrization operator fl given by

(7.16) fl(V)= (V).
m

Next, let 0,. ., Om be arbitrary real numbers such that 0-> 1 for i= 1,. ., m.
Define A(p) by

(7.17) A(p) (Xo, , Xm) --> (pXo, p’Xl, pX2, pOmXm).

Then A is compatible with (X, K), where K {(ul, ", urn)" lu, I--< 1 for i= 1,. ., rn}.
Then Corollary 7.2 implies that the system is STLC if, whenever B is a bracket with
an odd number of Xo’s, and an even number of X’s for each s {1,. , m}, it follows
that every A-homogeneous component of fl(B) is equal, when evaluated at p, to a
linear combination of brackets of lower A-degree. When the 0 are different, this
condition requires too much, for/3(B) will in general fail to be homogeneous. So the
most interesting case obtains when all the 0 are equal. Let 1-< 0 < c. Define the
O-degree 8o of a bracket B Br (X) to be the sum

(7.18) 8o(B) 8(B) + 0
i=1

where 8i(B) is the number of times that X occurs in B. Then 8o is the degree that
arises, in an obvious way, from a group of dilations A0. We can then apply Corollary
7.2 to get a local controllability theorem involving the group Ao. However, Ao only
enters the theorem via the concept of A-neutralization, and this concept is unchanged
if we multiply all^ the degreesby a fixed number v > 0. Hence we can use, instead of
8o, the degree 8o defined by 8o(B)=(1/O)8o(B), i.e.

(7.19) o(B) 8(B) +
i=l
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 185

The new definition now has the advantage that 60 also makes sense for 0 , in
which case oo(B) s, simply, the total number of occurrences in B of the X for
i= 1,. ., m. (But iLo does not arise from an admissible group of dilations.) We can
then state the following

THEORE 7.3. Consider a system

(7.20) : =To(x) + Z u,f,(x), x M, lu, 1,
i=1

and a point p M such that fo(P) O. Assume that (fo, ", f,,) satisfies the LARC at
p. Assume that there is a 0 1, oo] such that, whenever B Br (X) is a bracketfor which
6(B) is odd and 6I(B),..., tm(B) are even, then there are brackets C1,"’, Ck in
Br (X) such that

k

(7.21) Evp (f)(/3(B)) E sr Evp (f)(Ci)
i=1

for some , k R, and

(7.22) o(Ci) < o(B) for i= 1,..., m.

Then the system (7.20) is STLC from p.
For 0 < 0% this theorem is just the result of applying Corollary 7.2 to our situation,

using the group of dilations A0. To prove the theorem for 0 oo we just "take the limit
as 0 o." Rigorously, this means that, if the hypotheses are satisfied for 0 oo, then
they are also satisfied for some large finite 0. To see this, let us use S to denote the
linear span of all the brackets B such that (B)<-k and l(n.)+...-+-m(B)<-1. If
is an m-tuple (11,. ", lm) of nonnegative integers, we define Sk, to be the linear span
of those B’s for which 6(B) =< k, (B) 11," ", m(B) Ira. Also, we define

(7.23) Soo,, U Sk.t,
k=O

(7.24) .,= LI S,,

odd odd in exactly the same way, except that the unions areand we define spaces
only taken over odd values of k. We call the m-tuple even if all its components
l,. , l,, are even. Then the hypothesis of Theorem 7.3 for 0 oo says that

(7.25) oddEvp (f)/3(,.,oo.1, Evp (f)(Soo.l,l-1)

for all even 1. Pick an such that

(7.26) Evp (f)(So.r)= TpM.

For l- 0, 1,. ., l, pick k(1) such that

(7.27) Evp (f)(Soo.,)= Evp (f)(Sk,).,).

Then pick 0 1, oo) such that k(l)< 0 for !- 0,. ., I. We claim that, with this choice
oddof 0, the hypothesis of Theorem 7.3 holds. To see this, let B ,oo.. Assume first that

Ill> . Then Evp (f)(B) Evp (f)(So,r), so that Evp (f)(e) Evp (f) Sk( /-), /-). Therefore
Evp (f)(B) is a linear combination of vectors Evp (f)(C), where the C are in
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186 H.J. SUSSMANN

But then

(7.28) go(C,)=< +l<l+l<=lll<=o(B).
0

Next assume that Ill_-</ and is even. By (7.25) and (7.27), Evp (f)((n)) is a
linear combination of vectors Evp (f)(Ci) with Ci Sk<a).a, where , I1[- 1. But then

k(X)
(7.29) g0(C,) _<- + A < A + 1 Ill < o(n).

0

The proof of Theorem 7.3 is now complete.
Theorem 7.3 contains as.a particular case a result for single-input systems was

conjectured by H. Hermes and proved by us in [25]. Precisely, the Hermes condition
(HC) for a system

(7.30) =f(x) + ug(x), lul----< 1,

at a point p, is the condition that, if B is an arbitrary bracket of f’s and g’s with an
even number of g’s, then B(p) is a linear combination of values at p of brackets with
fewer g’s. (In particular, by taking B =f, we see that the HC implies that f(p)=0.)
The result proved in [25] says that, if the system (7.14) satisfies the LARC and the
HC at p, then it is STLC from p. If we apply Theorem 7.3 with rn 1 (in which case,
of course, the symmetrization operator/3 is just the identity), we obtain a strengthened
version of the theorem of [25]. The HC corresponds to 0 o whereas Theorem 7.3
allows other values of 0. Moreover, even if we apply Theorem 7.3 with 0 c, the
condition that has to be satisfied to get controllability is weaker than the HC, and
therefore the resulting controllability theorem is stronger. (The HC demands that every
bracket with an even number of g’s be neutralized, whereas our result only requires
this for brackets with an even number of g’s and an odd number off’s. As will be
shown in examples below, these refinements make it possible to handle cases where
the HC is unsufficient.)

For general m, R. Grossmann [8] states a sufficient condition for controllability,
namely, that every bracket where each of the f for 1, , m occurs an even number
of times be expressible, at p, as a linear combination of brackets of lower total degree.
This condition amounts to a weaker form of the case 0 1 of our theorem. (Theorem
7.3 only requires that the symmetrized brackets, which in addition have an odd number

offo’S, be expressible as linear combination of lower-degree elements.)

7.4. Low order sufficient conditions for systems with a cubic control set. We now
illustrate the use of Theorem 7.3 by deriving some sufficient conditions for systems of
the form (7.14), in terms of brackets of low degree. Assume that p is an equilibrium
point of (7.14), i.e. that fo(P)=0. Also, assume that (7.14) satisfies the LARC at p.
The simplest sufficient condition for STLC is the one obtained from the Pontryagin
Maximum Principle, which says that (7.14) is STLC from p if, for every e >0, the
adjoint equation along the trajectory x(t)= p, 0=< =< e, has no nontrivial solution- ,X(t) such that ( (t),f(p))= 0 for 0<= _<- e. The adjoint equation in this case, written
in coordinates, is simply the equation

(7.31)

where A is the Jacobian matrix off0 at 0. If A(.) is a solution of (7.31) such that (A(t),
f(p)) 0, then (A (0), Akf(p)) 0 for all k. Hence, if the vectors Akf(p) 1," ", m,
k 0, 1,... span TpM, there will not exist a )t (.) with the desired properties, and so
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 187

(7.14) will be STLC from p. Clearly, Akf(p)= (adfo)k(f)(p). Therefore the sufficient
condition obtained from the Maximum Principle simply says that (7.14) will be STLC
from p if the vectors (adfo)k(f)(p), i= 1,..., m, k 0, 1,... span TpM. Theorem 7.3
implies a stronger result, namely

PROPOSITION 7.4. Assume that fo(p)=0, and the vectors (adfo)k(f)(p),
i=l,’’’,m, k=0,1,..., together with the vectors [f,f](p),i,j{1,...,m},
span TpM. Then (7.14) is STLC from p.

Proof. Our hypotheses imply in particular that (7.14) satisfies the LARC from p.
Let /x>0 be such that the span of the vectors (adfo)k(f)(p), i{1,’’’,m},
k 0, 1, , is actually spanned by vectors of this same form with k _-</z. Pick 0 such
that/z _-< 0 <. Then TpM is spanned by vectors Evp (f)(B), where the B’s are brackets
such that go(B)-< 2. On the other hand, if C is any bracket with an odd number of
Xo’s and an even number of Xi’s for each { 1,. ., m}, then either B Xo, in which
case Evp (f)(B) 0, or o(B) > 2, in which case Evp (f)(C) is certainly a linear combina-
tion of vectors Evp (f)(B) with go(B)< (C). Hence the conditions of Theorem 7.3
are satisfied, and (7.14) is STLC from p.

Ifthe sufficient condition of Proposition 7.4 is not satisfied, then it will be necessary
to "neutralize" some brackets in order to be able to apply Theorem 7.3. The lowest
total degree d where there may exist brackets to be neutralized is d 3. (The case
d 1 is disposed of by the assumption that fo(p)= 0.) The only brackets of total degree
3 where Xo occurs an odd number of times, and each of the other Xi’s an even number
of times, are the expressions [X, [X, Xo]]. Symmetrization yields the element

(7.32) H [X, [X, Xo]].
i=1

We write h Ev (f)(H).
If h is "neutralized," in the sense that h(p) is a linear combination of vectors

gj(p), where the gj are brackets of "lower degree," then that "releases" a whole
collection of new brackets. If these brackets now span TpM, then we get controllability
again. Exactly which brackets are released by the neutralization of h will depend on
how h is neutralized. Suppose that

(7.33) h(p)= Y. a,k(adfo)k(f)(p)+ , /30[f,f](p)
i=1 k=0 i=1 j=l

for some choice of coefficients Olik [ij"
Then, if we choose any 0 such that 0 _-> 1, ^0 > , 1 we see that Evp (f)(H) is a

linear combination of vectors Evp (f)(B) with go(B)< go(H). The next value of the
total degree d for which there may be brackets B to be neutralized is d 5. And the
lowest possible value go(B) for such brackets is 2+(3/0). If the brackets for which
go <2+(3/0) span TpM, the system will be STLC from p. So we get

PROPOSITION 7.5. Assume that (i) fo(P)=0, (ii) (7.33) holds for some , and some
choice ofcoefficients Otik [30. Assume that there is a number 0 1, o] such that 0 > , 1,
with the property that the brackets B with kl fo’s and k2 f’s with i> 0 for all kl k2 such
that kl + Ok2 < 20 + 3, span TpM. Then (7.14) is STLC from p.

As a simple example, suppose that h(p)-0 or, more generally, that (7.33) holds
with , 1. Then 0 can be chosen to be an arbitrary number in [1, ]. In particular,
we can conclude that the system (7.14) is STLC from p if either (i) TpM is spanned
by all the brackets of total degree_-<4 or (ii) TpM is spanned by all the brackets with
3+= 1, 3_-<4, together with those with 3+= 2, 3<_-2, those with 3+= 3 and go_< 1,
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188 . J. SUSSMANN

and those with 6+= 4 and 80= 0, or (iii) TpM is spanned by the brackets with 8+= 1,
8_-< 5, together with those with 8+ 2, 8_-< 2, and those with 8+ 3, 8 0, or (iv)
TpM is spanned by the brackets with 8+= 1, 8 arbitrary, together with those with
8+= 2, 8 <-2. (Here, for a bracket B, 8i(B) is the number of occurrences of fi in B,
and 8+(B)==1 8(B) The four results stated above are obtained by taking, respec-
tively, 0 1, 0 1.1, 0 2.2, and 0 very large.) If (7.33) holds with v 2, then we have
to choose 0 > 1, and so we can conclude that (7.14) is STLC from p if (ii), (iii) or (iv)
above hold. If (7.33) holds with 9 3, then we must choose 0> 2, and we get that
(7.14) is STLC from p if (iii) or (iv) hold. Finally, if (7.33) holds with some 9->_4, we
get small-time local controllability if (iv) holds.

Notice, in particula.r, that if H is neutralized, in the sense that (7.33) holds for
some 9, then this has the effect of unconditionally releasing a number of brackets,
namely, all the brackets with 8+= 2, 8_-< 2.

Finally, we illustrate the result of Theorem 7.3 in the case rn 2, by giving some
simple sufficient conditions in terms of brackets up to degree 6. The algebra to be
considered here is L(Xo, X1, X2). The homogeneous components U’hm(Xo, X1, X2)
have dimensions 3, 3, 8, 18, 48, 116, for j 1, 2, 3, 4, 5, 6, respectively. So there is a
total of 196 potentially linearly independent brackets of degree _-<6. After we eliminate
those brackets that are totally even, or odd in either X1 or X2, and symmetrize, we
are left with exactly eight linearly independent elements to be neutralized, namely, (a)
Xo, (b) H, and (c) six elements B1, B2, B3, B4, Bs, B6 of degree five, given by

(7.34) /, [IX,, X], [IX,, X], Xol],

2

(7.35) B2 [X, (ad Xo)3(X)],
i=l

2

(7.36) B3 [[Xo, Xi], [Xo, [Xo, X]]],
i=1

2

(7.37) n4= (ad Xi)4(Xo),
i=1

(7.38) B= IX,, IX,, IX:, [Xo, X:]]]] + IX:, [X_, IX,, [Xo, X,]]]],

(7.39) B6 [[Xo, X,], IX2, IX,, X2]]] LF [[Xo, X2] IX1, IX2, X1]]].

If we apply Theorem 7.3 with 0 1, we can conclude that our system is STLC
from p if the brackets of total degree<-6 span TpM, provided that (i) fo(p) =0, (ii)
h(p) is a linear combination of values at p of brackets of degree< 3, (iii) each vector

Evp (f)(B), 1, , 6, is a linear combination ofvalues at p of brackets of degree < 5.

7.5. Two single-input examples. We now analyze from the point of view of
Theorem 7.3 two examples where the Hermes condition fails to hold but the system
is STLC from p.

In [22], G. Stefani discusses an example of a system =f(x)+ug(x) which is
STLC from 0 even though (a) the Hermes condition is not satisfied, (b) the first bracket
B needed to span the whole tangent space is one where g occurs four times. (This
shows that not all brackets that are even in g are obstructions to local controllability.)
We will show that Stefani’s example fits the framework of our Theorem 7.3, since B
is also even in f, and therefore there is no need for it to be neutralized. Stefani’s
example is the system u, 3 x, : x3y, in R3, with control constraint u[ _-< 1. Then
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 189

g=(1, 0, 0), f=(0, x, x3y). The relevant Lie brackets are as follows:

[g, f] (0, 1, 3x2y), [f, [g, f]] (0, 0, 2x3),
[g, [g,f]] (0, 0, 6xy), If, If, [g, ff]]] =0,

[g, If, [g, f]]]= If, [g, [g, f]]] (0, 0, 6x2),
[g, [g, [g,f]]] (0, 0, 6y),

[g, [g, If, [g,f]]]] (0, 0, 12x),

[g, [g, [g, If, [g,f]]]]] (0, O, 12).

(We omit brackets that vanish or that are trivially expressed in terms of the ones listed
here.) In particular, the vectors g(0) and [g,f](0) span a two-dimensional space S. If
B is any bracket off’s and g’s of degree-<_ 5, then B(O)S. In particular, if we take
0 1 in Theorem 7.3, we see that every bracket of degree 3 or 5 is equal, when evaluated
at 0, to a linear combination of brackets of lower degree. If we now add the bracket
[g, [g, [g, If, [g, f]]]]], which has degree 6, we span the whole space. Notice that, since
this bracket is of even total degree, Theorem 7.3 does not require that it be neutralized.
Hence Theorem 7.3 implies the fact--proved by Stefani--that this system is STLC
from 0.

The preceding example shows that it is possible for controllability to be achieved
thanks to the effect of some brackets that are even in g, so that not all such brackets
are "obstructions." We now briefly review another example, already discussed in [25],
which shows that a bracket which is even in g may be "neutralized" by a bracket with
more g’s but lower total degree. Consider the system u, p =x, : x +y, lul < 1.
Here f=(0, x, x3+y:z) and g=(1, 0, 0). The vectors g(0) and If, g](0) span a two-
dimensional space S, and all the (adf)kg(O), k >-2, are in $. The vector [g, [f, g]](0)
belongs to S. However, [g, If, [f, [g, f]]]](0) is not in S, so that the Hermes condition
fails to hold. On the other hand, [g, [g, [g,f]]](0) is not in S either, and therefore we
can apply Theorem 7.3 with 0 1 and conclude that our system is STLC from 0.

7.6. Polynomial control systems. In 14], V. Jurdjevic studied control problems of
the form

(7.40) P(x) + u,b,,
i=1

U--(Ul,"" .,Um)K

where the state variable x takes values in R", P:R" - R" is a polynomial map each of
whose components is homogeneous of degree d, and K is either a cube centered at 0
(the "restricted controls" case) or the whole space m (the "unrestricted case").

Jurdjevic proved that, if d is odd, then (7.40) is STLC from 0 if and only if S
where S is the smallest linear subspace of n which is invariant under the map P and
contains bl,’", b,. Moreover, in the unrestricted case it follows that.every x
can be reached from 0 in time T, for every T> 0. We show that this result follows
from our general theorem. Actually, we show that it follows from Brunovsky’s theorem
on odd systems. First we observe that, if d is odd, then (7.40) is an "odd system" in
Brunovsky’s sense. Therefore, the characterization of small-time local controllability
from 0 will follow if we show that the Lie algebra L generated by the vector fields
x P(x), x hi, x -hi satisfies L(0) S.

It follows from the definition of S that, if x $, then all the vectors b belong to
S, and so does P(x). Therefore all the members of L are tangent to $, and so L(0)_.c S.
On the other hand, if Q:"o" is a polynomial map and v is a vector in n, then
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190 H.J. SUSSMANN

the Lie bracket [ v, Q], of the constant vector field x --> v and the vector field x --> Q(x),
is the vector field x--> DoQ(x), where DoQ(x) is the directional derivative of Q at x
in the direction of v. In particular, this implies that (ad V)d(P) is the constant vector
field x--> P(v). Hence, if we let X be set of all vectors v such that the constant vector
field x-> v belongs to L, we see that E is invariant under the map P. Therefore S c_c_ X.
This implies that S

___
L(0), and so L(0)= $.

To complete the proof, we must show that, in the unrestricted case, the condition
S =" implies that the time T reachable sets are equal to " for all T> 0. Assume
that S Rn. Let T> 0. Then we already know that there is a neighborhood U of 0 that
can be reached in time T. Let p Rn. Pick r such that 0 < r < 1 and rp U. Let --> x(t)
be a trajectory such that x(0)=0, x(rl-aT) rp. (Since rp is reachable in time T,
rl-a>= 1, and 0 is an equilibrium, it follows that rp is also reachable in time rl-aT.)
Let y(t) r-lx(rl-at) for0=< -< T. Then y(0) =0, y(T) =p. Let Ul," ", Um be functions
on [0, rd- T] such that

(s)=P(x(s))+ u,(s)b, forO<--s<--_rd-lT.
i=1

Then

y(t)= rdp(x(rl-dt))+ r-dui(t)b,,
i=1

i.e.

.f(t) P(y(t)) + r-au(t)bi.
i=1

Since --> (r-dub(t)," ", r-alUm(t)) is an admissible control, it follows that p is reachable
from 0 in time T.

7.7. Low order conditions with a general polyhedral control set. Consider a finite
sequence V (V1,..., Vm) of vector fields on a manifold M. We want conditions for
V to be STLC from a point p. Equivalently, we want to know when the system

(7.41) := X wiVi(x), W’-(WI," ", Wm)EJ
i=l

is STLC from p, where J is the set of vectors (0, 0, , 0, 1, 0, , 0) Rm.
Let So( o//., p) denote the convex hull of the vectors V1(p)," ", V,, (p). Let Io( oF, p)

denote the largest subset I of the index set {1,..., m}, such that 0 is a convex
combination of the vectors V(p), I, with strictly positive coefficients. In [24], we
proved that, if (7.41) is STLC from p, then Io(, p) has to be nonempty and, moreover,
there have to exist indices Io(Y, p) such that V(p) 0. The main result of [24] was
a sufficient condition for (7.41) to be STLC from p. Let S(, p) denote the convex
hull of the vectors V(p), {1,. ., m}, V, V](p), i,j Io(V, p). The result of [24]
says that, if $1(V, P) contains a neighborhood of the origin in the full tangent space
TpM, then (7.14) is STLC from p. We now show that this result, as welt as some stronger
conditions, can be derived from Corollary 7.2.

First, we observe that, instead of (7.41), we can consider the system

(7.42) := E w, Vi(x),
i=1

W--(W1,’’’,Wm)Km,
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GENERAL THEOREM ON LOCAL CONTROLLABILITY 191

where Km is the convex hull of J and the vector (0, 0,..., 0)..(Indeed, let be the
union of J and {(Oz..., 0)}. It is clear that, if small-time local controllability holds
with J replace.d by J, then it holds for the system (7.41). On the other hand, Proposition
2.3 says that J can be replaced by its convex hull as well.)

Let us assume that the origin is an interior point of SI(V, p). Also, let us relabel
the indices so that Io(V, p) { 1,. .,/z}, where 2 _-</z _-< m.

Then we can express 0 as a convex combination

(7.43) 0= Y A,V(p), h,>0, Y h,=l.
i=1 i=1

On the other hand, the hypothesis that 0 is an interior point of SI(V, p) implies
that: (i) the vectors VI(p), , V,,,(p), together with the [V, V](p), for i- 1,...,
j 1,..., tx span the tangent space TpM, (ii) it is possible to express 0 as a convex
combination

(7.44) 0 a,V(p) + Y flij[ V, V](p)
i=1

where the ai, flo are strictly positive, and ,ai + ’flo 1.
(To see that (ii) follows, pick 8>0 so small that -SZ(p) SI(V, p) whenever

Z V for some or Z V, V] for some i,j {1,. .,/x}. Then each -SV(p),
i {1,..., m}, can be written as a convex combination of the V(p), j {1,..., m},
and the IVy, Vk](p),j, k{1,’’’ ,/z}. So 0 can be written as a linear combination of
these same vectors in which all the coefficients are nonnegative and the coefficient of
V(p) is strictly positive. The same is true for [V, V](p), if i,j {1,. .,/z}. If we then
add all these expressions and divide by the sum of the coefficients, we obtain an
expression of the desired form.)

Now define fo 0,f hiV for 1,. .,/x,f aiV for =/ + 1,. ., m. Consider
the system

(7.45) =fo(x)/ Y u,f(x), u=(ul,’’’, Um) K,,.
i=1

It is clear that every trajectory of (7.45) is a trajectory of (7.42). Hence it suffices
to prove that (7.45) is STLC from p.

To prove that (7.45) is STLC from p, we work with the free Lie algebra
L(Xo,"’, X,). We let Ao be the group of all automorphisms g of L(Xo,’’’, Xm)
that are induced by a permutation r of the indices {0,..., m} that satisfies 7r(0)- 0,
r({ 1," ,/x}) { 1," ,/z}. It is clear that all the g are input symmetries. We define
dilations A(p) by assigning A-degree one to Xo,’",X,, and A-degree 8 to
X,+,. , X,,, where is some number such that 2 < 8 < 3.

We now show that all the totally odd Ao-fixed elements of L(Xo,’’’, Xm) are
A-neutralized forf at p. Sincefo(p), ,fro(P), and the [f,f](p) with i,j
span TpM, it is clear that TpM is spanned by the evaluations at f, p of elements of
L(Xo,’", X,,) of A-degree not greater than 8. Among these, the Ao-fixed elements
of A-degree one are spanned by Xo and X1 +’" + X,. But

(7.46) fo(P) (fl +’’" +f,)(P) O,
and so these elements are neutralized. The elements of A-degree 2 are totally odd and
therefore need not be considered. The Ao-fixed elements of A-degree 8 are spanned
by X,+I +" "+ X,,, and (7.44) shows that f,+l(p)+’’ "+f,,(p) is equal to the value
at p of an element of A-degree < 8. Hence Corollary 7.2 can be applied. This completes
the proof that the result of [24] is a particular case of Corollary 7.2.
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192 H.J. SUSSMANN

It should be clear from the preceding proof that one can get more sophisticated
results by just applying the same method. A detailed analysis ofwhat can be so obtained
will be the subject of a future paper. At the moment, we limit ourselves to two examples.
In these examples, if hi,’’ ", h, are such that (7.43) holds, we let gl, g2 denote the
vector fields

(7.47) gl AV+. +AuV,

(7.48) g2 Y A 2(ad, g/)2(gl).
i=1

(That is, g =f +. +f, g:=Y= [f, [f, gl]].)
Then, if (7.43) holds, the system (7.41) is STLC from p if one of the following

conditions holds"
(I) (a) g:(p) is a linear combination of the vectors V(p), i{1,... ,/x} and the

V, V](p), i,j {1, ,/x},
(b) 0 is a convex combination, with strictly positive coefficients, of the E(P),

{1,...,m}, the[E, V](p), i,j{1, g}, and the [E,[V, E,]](P), i,j, k
{1,... ,/x},

(c) TpM is spanned by the V(p), { 1,..., m}, the V, V](p), {1,..., m},
j{1,...,/}, the [V, [V, Vk]](p), i,j, k {1, l}, and the
V, V, [Vk, V/]]](p), i,j, k,/6{1,’’’ ,/};

(II) (a) 0 is a convex combination with strictly positive coefficients of the V(p),
i{1,...,m} and the [V, V](p), i, j6{1,...,},

(b) g2(P) is a linear combination of the V(p), {1,..., m} and the V, V](p),
i,j {1, l},

(c) TpM is spanned by the V(p), i{1,..., m}, the [V, V](p), i, j6{1, m},
the [V,[V, Vk]](p)), where i,j,k are in {1,...,/}, and the
V, V, Vk, V/]]](p), i,j, k, {1," ",/x}.

To see that (I) implies small-time local controllability from p, we reason as before,
but with 3 < 6 < 4. Condition (c) of (I) says that TpM is spanned by the brackets of
A-degree not greater than 1 + 6. The Ao-fixed elements of A-degree one are spanned
by Xo and X +. + X,, which are obviously neutralized, since fo -= 0 and (7.43) holds.
The Ao-fixed elements of A-degree 2 do not matter, because they are totally even. In
A-degree 3 there is only one Ao-fixed element, namely G2, where we let G=
X +. .+X,, G2==1 [X, [X, G]]. Condition (a) then says that this element is
neutralized. In A-degree 6 there is one Ao-fixed element, namely, X,+I+... +
Condition (b) then says that this element is neutralized. Finally, all the elements of
A-degree 4 or 1 + are totally even, and therefore need not be considered.

To see the sufficiency of (II) we again use the same argument, with 6 such that
2 < < 2.5. Then condition (c) says that TpM is spanned by evaluations of brackets
of A-degree not greater than 26. The possible A-degrees of such brackets are 1, 2, 6,
3, + 6, 4, 2 + 6 and 2& The only A-degrees where totally odd brackets occur are 1, 6,
3 and 2 + 6. In A-degree 1, the Ao-fixed elements are Xo and X +... + X,, which are
neutralized. In degree 6, the Ao-fixed element is X,+ +... + X,,, which is neutralized
by condition (a). In A-degree 3, the Ao-fixed element is G2, which is neutralized by
condition (b). So Corollary 7.2 applies, and small-time local controllability follows.

8. Conclusion. The main implication of the results proven here is that, so far, one
method appears to suffice to prove most known small-time local controllability results.
It seems to us that this method is still very special, and it should be possible to obtain
better results by making a more detailed analysis of the semigroups Su(X, K).
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One important application of the theory developed in this paper is to the problem
of High Order Optimality Conditions. Small-time local controllability is a particular
instance of this general problem, in which we are concerned with finding sufficient
conditions for a particular trajectory (given by x(t) p constant) to lie in the interior
of the attainable set from p, which is the same as finding necessary conditions for the
trajectory to lie on the boundary of the reachable set. The methods of this paper can
be used to prove results on the construction of control variations for more general
trajectories, and to obtain necessary conditions for optimality. The results will be
reported in subsequent papers.

Appendix.
Proof of Proposition 2.3. Clearly, all that needs to be shown is that, if is STLC

from p, it follows that E is STLCpc from p. Suppose that is STLC from p. Let T> 0.
Pick T’ such that 0< T’< T, and let U be an open set such that pe U and U
Reach (, -< T’, p). Shrink U, if necessary, so that L(f)(q) is the full tangent space at
q for every q e U. Let q e U. Let be the family of vector fields associated with E,
and let -.={-V: Ve }. Then L(f)=L(;)=L(-). Let be the family of
restrictions to U of the members of -.. Then has the AP from q. So there is a
nonempty open subset W of U such that every re W is reachable from q by an
-trajectory in time not greater than T-T’, so that q is reachable from every re W
by an -trajectory in time not greater than T-T’.

Now pick an re W. Since W_ U, r is reachable from p in time , for some- e [0, T’] by means of a trajectory of that corresponds to a control u(. )’[0, ]/.
Then u(.) can be approximated in LI([0, ], R") by a sequence {u,(.)} of piecewise
constant K-valued controls. If xn(" is the trajectory for un(. such that x,(0) p, and
we let rn xn(z), then r, e W for sufficiently large n. Therefore W contains a point r’
which is reachable from p in time z by means of a pie,cewise constant K-valued control.
Let co (K) denote the convex hull of K. Since K is the closure of co (K), every
piecewise constant/-valued control can be approximated in LI([0, ], Rm) by piece-
wise constant co (K)-valued controls. Therefore W must contain a point r" which is
reachable from p in time z by means of a piecewise constant co (K)-valued control.
Finally, a piecewise constant co.(K)-valued control can be approximated weakly by
piecewise constant K-valued controls. Hence W contains a point r’" which is reachable
from p in time by a piecewise constant K-valued control. So r’" e Reachpc (E, <_-T’, p).
Since q e Reachp (E, =<( T- T’), r’"), we conclude that q e Reachpc (,v_,, <__ T, p). Since q
was an arbitrary point of U, we see that U___ Reachp (E, =< T, p). Since U is open,
p e U, and T was an arbitrary positive number, it follows that E is STLCp from p.
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