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1. INTRODUCTION

In this article we study the controllability of nonlinear systems of the form
dxidt = F(x, u). ()

Our objective is to establish criteria in terms of F and its derivatives at a
point x which will give qualitative information about the sets attainable
from x. The study is based primarily on the work of Chow [4] and Lobry {16],
although it is similar in its approach to works by other authors in that it
makes systematic use of differential geometry (for instance, see Hermann [8, 9],
Haynes and Hermes [6], Brockett [2], ete.).

The state variable x is assumed to take values in an arbitrary real, analytic
manifold M, rather than in R™ We chose this genecralization because it
creates no essential new difficulties while, on the other hand, it allows for
certain applications which are not commonly treated in control theory. For
instance, when M is a Lie group, then the present results can be specialized
to obtain more detailed controllability criteria. Control problems on Lie
groups were first considered by Brockett in [2], and will be treated in a
forthcoming paper by the authors.

Most of the recent studies on controllability of nonlinear systems have
essentially dealt with symmetric systems, 1.e., systems of the form () with
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the property that F(x, —u) = —F(x, u) (Hermann [9], Haynes and Hermes
[6], Lobry [16]). As remarked by Lobry in [16], the consideration of sym-
metric systems often excludes interesting situations arising from mechanics.
In these cases the system is of the form

dxjdt = A(x) - H(x) - .

A notable exception is the work by Lobry [17]. Lobry stated (and proved
for the case of two vector fields in R3) the result for nonsymmetric systems
that appears here as Theorem 3.1.

Our results apply to nonsymmetric systems. We obtain some general
information about the geometric structure of the attainable sets showing that
they “practically” arc submanifolds (sec Theorems 4.4 and 4.5 for the precise
statements). This information yields a complete answer to the problem of
deciding when the sets attainable frem a point x have a nonempty interior.
The criteria obtained involve purely algebraic manipulations of F and its
derivatives (of all orders) at the point x (see the Remark below).

In particular, our results contain those of Kudera [14]. In this connection
we observe that our proofs are of intcrest even for the case treated by Kudera
(sec Sussmann [21]).

We have omitted the consideration of nonautonomous systems; they can be
treated analogously by the familiar procedure of reduction to an autonomous
system (i.e., by considering the state variable to be defined in 47 x R).

The organization of the article is as follows: in Section 2 we introduce
notations and basic concepts; in addition, we quote some well-known basic
results which will be used later. In Section 3 we prove our main results in
differential geometric terminology.

In Section 4 we apply these results to control systems. We derive the
algebraic criteria mentioned above (Corollaries 4.6 and 4.7), and we prove two
“global results”: we show that, for a large class of manifolds, accessibility
(i-e., the property that, for any given x, the set of points attainable from x
has a nonempty interior) implies strong accessibility (i.c., that for any given «
and any given fixed positive ¢, the sct of points attainable from x at time ¢ has
a nonempty interior). We also show that, for a still larger class, including
the Euclidean spaces, controllability implies strong accessibility.

Finally, Section 5 contains examples. We show how our results can be
used to derive the classical controllability criteria for the system

dxjdt = Ax + Bu.

We also derive the results of Kuéera and indicate some generalizations.

Remark. An assumption that is made throughout the article is that /' is an
analytic function of x. This guarantees that all the information about the
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system is actually contained in F and its derivatives (of all orders) at a given
point x. The analyticity assumption cannot be rclaxed without destroying
the theory (cf. Example 5.3).

Another assumption that we make is that the trajectories of the system
are everywhere defined. As opposed to the previous one, this assumption is
not essential (except for the “global” Theorems 4.9 and 4.10). We use 1,
however, because it considerably simplifies all the proofs.

2. PRELIMINARIES

We shall assume that the reader is familiar with the fundamental notions
of differential geometry. All the definitions and basic concepts utilized in
this paper can be found in standard books, (for instance [1, 3, 7, 13 and 19}]).

The following notations will be used throughout:

R the set of real numbers.
R™ n-dimensional Euclidean space.
M, the tangent space to the manifold M at the point x.
TM the tangent bundle of the manifold M.
V(M) the set of all analytic vector fields on the analytic manifold M.

We will regard V(M) as a Lie algebra over the reals. For any X and ¥ in
V(M), we will denote the Lie product by [X, Y] (i.e,, [X, Y] =~ XY — YX).
All the manifolds will be assumed to be paracompact. Recall that a sub-
manifold of a paracompact manifold is paracompact. Also, a connected
paracompact manifold is a countable union of compact sets. These facts imply
(cf. Lobry [16, p. 589]):

Lemma 2.1, Let M be a (paracompact) manifold of dimension n. Let S be
a k-dimensional connected submanifold of M. If k < n, then the set of poinis of S
has an empty interior in M.

A subsct D of V(M) will be called inwolutive if, whenever X and Y belong
to D, then [X, Y] also belongs to D. A subalgebra of V(M) is an involutive
subspace. Let D C V(M). An integral manifold of D is a connected sub-
manifold S of M with the property that S, = Z(D(x)) for every xS,
where D(x) == {X(x) : X € D}, and where L(D(x)) is the subspace of M,
spanned by D(x). We state the following basic result about integral manifolds:

Levva 2.2, Let D be an involutive subset of V(M), and let x € M. Then x
1s contained in a unique maximal integral manifold of D (here ‘‘maximal” means
“maximal with respect to inclusion’).
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This result is classical if the dimension of £ (D(x)) is the same for each
x € M (Chevalley [3]). For a proof in the general case, see Lobry [16].

If D C V(M), we denote the smallest subalgebra of V(M) which contains D
by 7(D), and the maximal integral manifold of .7 (D) through x by I(D, x).
Recall that, if X is a vector field on M, then « is an éntegral curve of X if «
is a smooth mapping from a closed interval I, I C R, into } such that

do(t)jdt = X(a(t))  forall tel.

Derinetion 2.3. If D is a subset of V(M), then an integral curve of D
is a mapping « from a real interval [£, #'] into M such that there exist ¢ =
by << t; << - <t =1, and elements X ,..., X; of D with the property
that the restriction of « to [f;;, t;] is an integral curve of X for each
i =1,2,..., k. We have the following elementary fact:

Lemva 24. Let D C V(M). Let o : [ty , £,] — M be an integral curve of D,
and let o(t) = x for some t € {1, , t]. Then, o(s) € I(D, x) for all s [t, , t;].

Proof. It is sufficient to consider the case when « is an integral curve of X,
X e D. For each maximal integral manifold S of 7(D), let J(.S) be the set
of all s €[4, #,] such that ofs) € S. From the local existence and uniqueness
of solutions of ordinary differential equations it follows that, if s € J(.S), then
there exists 7 > 0 such that (s — 7, s +#) N [£,, ] C J(S). Thus, J(S) is
open relative to [#,, #,]. Since the maximal integral manifolds of J (D) are
disjoint, we have that, for some maximal integral manifold S, [#,, #,] C J(5).
But of#) € I(D, x); therefore, our proof is complete.

Chow's theorem provides a partial converse to the above lemma. If
D C V(M), then D is symmetric if, whenever X € D, —X also belongs to D.
We can now state Chow’s theorem as follows:

Lemma 2.5. Let D C V(M) be symmetric, and let x € M. Then, for every
v eI(D, x) there exists an integral curve o : [0, T]— M of D, with T > 0,
such that o(0) = x and o(T) = y.

In other words, every point of the maximal integral manifold of 7 (D)
through x can be reached in positive time by following an integral curve of D
having x as its initial point.

DeriNtTION 2.6. Let D C V(M), and let x € M. If T = 0, then, for any
ve M,y is D-reachable from x at time T if there exists an integral curve «
of D defined on [0, T'] such that «(0) = & and o(T) = y. The set of all
points D-reachable from x at time 7' is denoted by L, (D, T'). 'The union of
LD, t) for 0 < £ < oo (respectively for 0 << ¢ < T') is denoted by L,(D)
(respectively, L (D, T)).
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3. INTEGRABILITY OF FAMILIES OF ANALYTIC VECTOR FIELDS

As an introduction to the general situation we first consider the case when D
is a symmetric subsct of V(M). Chow’s theorem can be utilized to obtain
a necessary and sufficient condition for L (D) to have a nonempty interior in
M. Tet n .= dim M =- dim 7 (D)(x). Then I(D, x) is an #-dimensional
submanifold of M, and hence is open in M. By Chow’s theorem we have
that L (D) = : I(D, x). We conclude that L(D) is open in M. Conversely
(and without mvokmg the symmetry of D), if dim 7 (D)(x) < n, then I(]), x)
is a connected submanifold of M of dimension less than #z; then from
L.emma 2.1 it follows directly that (D, x) has an empty interior in 3. Since
L.(D) CI(D, x), Ly(D) also has an empty interior. Thus, if D is symmetric,
a necessary and sufficient condition for L (D) to have a nonempty interior
in MM is that dim 7 (D)(x) = dim M. Moreover, this condition is necessary
even in the nonsymmetric case (Lobry [16]). We shall show that 1t is also
sufficient. For this purpose we shall assume that the elements of D are
complete- -recall that a vector ficld X is complete if the integral curves of X
are defined for all real ¢ {13, p. 131.

‘TueoreMm 3.1. Let M be an n-dimensional analytic manifold, and let
D C V(M) be a family of complete vector fields. A necessary and sufficient
condition for L (D) to have a nonempty interior in M is that dim 7 (D)(x) = n.
Moreover, if this condition is satisfied, then for each T > 0, the interior of
LD, T) is dense tn L(D, T') {thus, in particular, L (D, T) has a nonempty
interior].

Proof. We already know that the condition of the theorem is necessary.
So we assume that dim J(D)(x) == n, and we prove the sccond statement.
Clearly, this will imply that L (D) has a noncmpty interior in M. Without
loss of generality we can assume that D is finite. Let D = {X ..., X,}.
For each ¢ == 1, 2,..., k, let @, -) be the one-parameter group of diffeo-
morphisms induced by X (i.c., t — @, y) is the integral curve of X; which
passes through v at ¢ = 0; the fact that it is defined for all real ¢ follows
from the completeness of X,). If m is a natural number, t == (¢ ,..., t,,) is an
element of R™, and i == (4 ,..., £,,) is an m-tuple of natural numbers between
I and &, then we denote the element @, (tl,(D (12, , D, (t,,“ x) ) by
D(t, x). Let 5-D be the family of vector fields obtained fmm D by adjoining
the vector fields — X, ,..., —X; to D. Then, =D is symmetric, and
dim .7°(+ D)(x) = n. From Chow’s theorem we conclude that L(+D) 1s
open 1n M. Clearly the clements of L,(-+-D) are exactly those elements of M
which are of the form @ (¢, x) for some m, some m-tuple i, and some t & R™,
For each i, and for each natural number N > 0, let 4(i, N) be the set of all
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points of M of the form ®@y(t, x), where || t|| << N (here|| t||= [, ] 4+ -+ [ £ ])-
Since A(i, V) is the image of the compact set {t : || t|| < N} under the con-
tinuous mapping t — Dy(t, x), we have that A(i, N) is compact. Also, since
L.(+D) is the union of the sets A(i, N) (taken over m, i and N), it follows
from the category theorem that, for some i and N, the set A(i, N) has a
nonempty interior in M. For such an i, let F: R™-—> M be defined by
F(t) = @t, x). Then F is an analytic mapping whose image has a non-
empty interior in M. By Sard’s theorem (Sternberg [19]), the differential
dF, of F at t must have rank z for some t € R™. Since dF, depends analytically
on t, it follows that the set £2# = {t : t e R™, rank dF, < n} has an empty
interior. Let £ = R™ — £#, Then £ is open and dense in R™

Let T'> 0, and y €L,(D, T). We now show that y is in the closure of
the interior of Ly(D, T). It is clearly sufficient to assume that y e L (D, 1),
where 0 <{ ¢ <C T (for each point of L (D, T") is in the closure of | {L (D, t) :
0<Lt<<T}). Let y=>D(s,x) where j = (f1,jo) § =S, 5p)
$ > 0,5, >0,and sy + -+ -+ 5, = ¢. Let

U=Qn{t:|t) <T—tn{t:t, >0,.,1, >0}

U is open, and its closure contains the origin 0 of R™. Since dF, has rank = at
each point t € U, it follows that F(U) is open. Let V = {®(s, F(t)) : te U}.
V is the image of F(U) under the diffeomorphism 2z — @(s, 2); therefore,
V is open in M and, moreover, every element of V is D-reachable from x
at time [[s]| + || t]| = £+ || t]| < T (here we use essentially the fact that
%y y-ry L Are nonnegative). It remains to be shown that y belongs to the closure
of V. Let {t,} be a sequence of elements of U which converges to 0. Then

lim @(s, F(t,)) = Bys, F(0)) = Bys, x) = v.

This completes the proof of the theorem.

We now want to state an analogous theorem for the sets Ly(D, T'). For
this purpose, we shall introduce a Lie subalgebra Z(D) of .7 (D) which will
be related to these sets in the same way as 7 (D) is related to the sets L,(D, T').
The aim of the following informal remarks is to motivate our definition of
To(D). We shall ignore the fact that time has to be positive. Morcover, we
shall assume, for simplicity, that D consists of three vector fields X, X,
and X; . Let @, , @, and @, be the corresponding one-parameter groups. It is
clear that Z (D) has the following “‘geometric interpretation”. 7 (D)(x) is,
for each x € M, the set of all limiting directions of curves through x that are
entirely contained in L,(D). Thus, for instance, if ¢ = 1, 2, 3, then all the
points in the curve ¢ -> @,(t, x) are attainable from x (recall that we are
forgetting about positivity), and this is reflected in the fact that X,(x) belongs
to J(D)(x). Similarly, the curves a;(t) = D,(—1, P(—t, D,(t, D2, x)))) are
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also contained in L (D). By the well-known geometric interpretation of the
Lie bracket (cf. Helgason {7, p. 97]), the limiting direction of ;; is [ X; , X;](x)
{after a reparametrization). T'hus, it is clear why [X;, X;] belongs to .7 (D).
Obviously, a similar argument works for the brackets of higher order. The
geometrical meaning of 7 (D) is now obvious.

If 7,(D) is going to play the desired role it is clear that J(D)(x) will have
to be the set of all limiting directions of curves y through x such that 4(¢) is
““attainable from x in zero units of time” for all ¢. Notice that the curves «,(t)
of the preceding paragraph have this property. Indeed, «(t) can be reached
from x by “‘moving forward” in time 2¢ units, and then “backward” another
2t units. This shows that the vector fields [ X, , X|] are reasonable candidates
for membership in FYD). A similar argument applies to higher order
brackets, such as [X;, [X;, X,]], ctc. On the other hand, a vector ficld such
as X, should not be included in Jy(D) by definition, because we do not know
whether the points @,(¢, x), t £ 0, can be reached from x in 0 units of time
(but, of course, it may happen that some X, will belong to .7 (D) anvhow;
for instance, we could have X, = [X,, X;]). However, the vector fields
X; —- X;will have to be included, because (X; - X)(x)is the limiting direction
of the curve t — @,(—t, D,(t, x)). In other words, the subspace generated by
the differences X; -— X; will have to be included in .7y(D). This subspace can
also be defined as the set of all lincar combinations 3X; + AX, — A X,
such that A .- A, -~ Ay -= O (that all the differences X; — X are linear
combinations of this type is trivial; conversely, if V' = A X| 4 A,Xs o+ X,
with Ay = A+ A3 =0, then V = A X, & ALX, 2 (=A — W) X, ic,
Vo= (X — X)) - (X — X))

We conclude that the reasonable candidates for membership in Zy(D) are:
(1) all the brackets [X;, X;], [X;, [X;, X.]], etc., and (ii) all the sums
AKX 2 X, 5 A X, where Y A; == 0. Notice that the subspace generated
by (1} is clearly the derived algebra of 7 (D) (by definition, the derived algebra
of a Lie algebra L is the subalgebra L” of L generated by all the brackets
X, Y], Xel, YeL; it is easy to check that L’ is in fact an ideal of L; cf.
Helgason 7, p. 133]).

We now return to our formal development. Let 77°(D) denote the derived
algebra of 7 (D). Motivated by the previous remarks, we define Z(D) to be
the set of all sums X ~ ¥, where X is a lincar combination 3;_, X, with
X, X,eDand Y A, = 0, and where ¥ € 7'(D). It is obvious that .7,(D)
1s an ideal of .7 (D). One shows casily that .7 (D) is the set of all vector fields
of the form Zf’l AX; + Y, where X ..., X, belong to 1), Y belongs to
F(D), and Ay ,..., A, are reals (but A, & - |- A, need not be zero). From
this it follows immediately that .7(D) is a subspace of .7 (D) of codimension
zero or one. The codimension will be zero if and only if some X € D belongs
to Jy()) (in which case every X e /) will belong to .75()). Similarly, for
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each x € M, if k = dim 7 (D)(x), then the dimension of .7(D)(x) will either
bekork — 1.

We shall also be interested in associating to each D C V(M), a set D* of
vector fields in the manifold M x R. Recall that the tangent space to M X R
at a point (»,7) (x € M, r» € R) is identified, in a natural way, to the direct
sum M, PR,. If xeV(M), YelV(R), we define the vector field
X@®YelV(M x R) by

(X @ Y)(x 1) = (X(x), Y(r))-
The set D* is defined to be the set of all vector fields X @ 8/o¢, where X € D,
and where £/t is the ‘“‘canonical” vector field on R (ie. (8/0f)f =f").
Using the identity [X @ X, Y @ Y] =[X,Y] @ [X', Y], one shows
easily that 7 '(D*) is the set of all vector fields of the form X @ 0, where
X eJ'(D) and 0 is the zero vector field. Therefore, 7 (D*) is the set of
vector fields of the form

2 0
XA (@) + Y @0,
where X7 ,..., X, belong to D, Y € 7'(D), and A, ,..., A, are scalars.

TuroreM 3.2. Let M be an analytic n-dimensional manifold, and let D be
a family of complete analytic vector fields on M. Let x € M, and let T > 0.
Then L (D, T') has a nonempty interior in M if and only if dim Fo(D)(x) = n.
Moreover, in this case, the interior of L,(D, T is dense in L (D, T).

Proof. 'The main idea in this proof is to modify our problem so that we
can ‘keep track” of the time elapsed while we move along an integral curve
of D. We shall then apply Theorem 3.1 to the modified system. We shall
work in the manifold M x R. As in the preceding paragraphs, we let the
family D* of vector fields on M X R be defined by D* = {X &® (9/ot): X € D}.
It is clear that there is a one-to-one correspondence between integral curves o
of D such that o(0) = x, and integral curves 8 of D* such that S(0) = (x, 0).
This correspondence is given by assigning to each curve o the curve
t — (of2), t). It follows that y e L,(D, T) if and only if (v, T') € L, o(D*, T).
We show that L(D, T') has a nonempty interior in M if and only if L, q(D¥)
has a nonempty interior in M X R. Assume that L (D, T') has a nonempty
interior in M, and let ¥ be a nonempty open set such that V C LD, T).
Let X € D, and let @ be the one-parameter group of diffeomorphisms of I
generated by X. Consider the mapping F: V' X R — M x R defined by
F(v, t) = (D(t, v), T + ). It is immediate that the differential of F has rank
n -+ 1 everywhere. Therefore /' maps open sets onto open sets. Since
F(V x (0, ©©)) C L 0(D*), we conclude that L, o (D*) has a nonempty
interior in M X R.
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To prove the converse, assume that L, (D *) has a nonempty interior in
M x R. By Theorem 3.1, for each ¢ with 0 <t < T, L, (D*, £) has a
nonempty interior in M X R. Let V be a nonempty open subset of 3, and
let W be a nonempty open subset of R such that I x W C L, o(D*, t).
Let se W. Since V' X {s} C L o(D¥*,t), we conclude that I C LD, s).
Let X e D, and let @ be the corresponding one-parameter group on 3.
Denote the mapping y — (T -- s, y) by G. Then G(V) is open. Since G(})
is contained in L(D, T), it follows that L (D, T') has a nonempty interior.

We conclude from Theorem 3.1 that L{D, 7) has a nonempty interior if
and only if dim.7(D*)(x,0) == n + 1. To complete the proof of the first
part of our statement, we must show that this last condition holds if and only
if dim Zy(D)(x) =~ n. We recall, from the remarks preceding this proof,
the fact that every X* € .7 (D*) can be expressed as

Fd 8 \
X =Y M (X@ )+ YOO #
i=1 b
where X, ,..., X, belong to D and Y € 77(D)). Now assume that
dim 7 (D*)(x,0) = n -+ 1.
Let ve M, . Then (v,0) must belong to F(D*)(x,0), so that (v,0) =
X*(x,0), where X*e 7 (D*). Then formula (#) holds for suitable A,
X;, Y. Therefore,
v = (Z A X - Y) (=),
and
0-=Y A\ 3(0).
‘ot

The last equality implies that " A, =. 0, so that the vector field 3 A,X; +-
belongs to Jy(D). Thus v € .7y(D)(x). We have shown that M, C Fy(D)(x).
Therefore the dimension of Z(D)(x) is n. Conversely, let dim Fy(D)x) == n.
Let ve M, . Then ¢ € Z(D)(x), so that

v = (LAX: + ¥) (),
where the X; belongto D, Y c.7'(D)yand ¥ A; = 0. Therefore,
00 = (ZrX: + ¥) @ (TA) -2 (.0

- (ZM (Xi @—i—) - Y@o) (x, 0).
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This shows that (v, 0) belongs to 7 (D*)(x,0). Pick an X eD. Then
(X & ¢/ot)(x, 0) belongs to D*(x, 0) by definition, and (X & 0)(x, 0) belongs
to 7 (D*)(», 0) by the previous remarks. Therefore (0, 0/6£(0)) belongs to
T (D*)(x, 0). We have thus shown that 7 (D*)(x, 0) contains all the vectors
(v,0), ve M,, and also the vector (0, 8/0£(0)). Therefore T (D*)(x, 0) =
(M % R)(.g , so that dim T (D¥*)(x, 0) = n 4 1 as stated.

We now prove the second part of the theorem. As we remarked earlier,
there is no loss of generality in assuming that D is finite. Let y e L (D, T').
Using the notations of the proof of Theorem 3.1, let y = @(t, x), where
1 == ({1 .-, L), and where t € R™ is such that ¢; > 0 for 7 = 1,..., m and
1 t] = T. Let {s;} C (0, t,,) be such that lim,_, s; = 0. Since our condition
for L(D, T') to have a nonempty interior is independent of 7, we conclude
that L(D, #) has a nonempty interior for all # > 0. In particular, for each
k > 0, there exists x, which belongs to the interior of L,(D,s;). Let
te = (b yooos by » b — 8z), and let y, = Dt , x,). For each k>0,
1, belongs to L(D, T); since @, is a diffeomorphism, y;, is in the interior of
LD, T). Also, x;, — x as k -> oo because D is finite and s, — 0. Since @, is
continuous in both variables, and since t;, — t, we have that y, — v, and
our theorem is proved.

The results is the previous theorems can be utilized to obtain information
about the sets L (D, T) and L,(D, T"), even when dim 7 (D)(x) < n.

TueoreMm 3.3. Let D C V(M) be a family of complete vector fields. Then,
for each T > 0, the set LD, T') is contained in I(D, x). Moreover, in the
topology of I(D, x), the interior of L(D, T) is dense on L (D, T). L(D, T') has
a nonempty interior in I(D, x) if and only if dim F(D(x)) = dim  (D)(x) and,
in this case, the interior of Ly(D, T') is dense in L,(D, T).

Proof. 1f X €7 (D), then X is tangent to {(D, x). Thus there is a well-
defined restriction X7 of X to I(D, x). We denote the set of all such restrictions
of elements of D by D#, Since [X, Y]* = [X#, Y#], it follows that 7 (D)* =
J(D*). Analogously, we have that Jy(D)* = 7 (D#). If we now apply the
previous theorems to the family D# of vector fields in I(D, ), we get all the
conclusions of the theorem.

CoROLLARY 3.4. Let S be a maximal integral manifold of T (D). Then the
dimension of To(D)(x) is the same for all x € S.

Proof. 1f dim .77 (D)(x) = k then, for each x € S, the dimension of Fy(D)(x)
is either 2 or &k — 1. We show that, if dim J(D)(x) = k& — 1 for some x € S,
then dim Jy(D)(y) =k — 1 for all ye S. Let £2 be a nonempty, open
(velative to .S) subset of L,(D) (this is possible by Theorem 3.3). We first
show that, if y € 2, then dim J(D)(y) = k& — 1. If this were not the case,
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then necessarily dim Z3(D)(y) = k. Then L,(D, t) would have a nonempty
interior in S for all ¢ > 0. This would imply that L,(D, ) has a nonempty
interior in S. But by our assumption this is impossible. Thus, dim 7 {(D)(y) =
k —- 1 for all y e Q. Since S is connected, and £ is open in S, we have that
dim J(D)(y) - = k — 1 for all y € S: therefore, our statement is proved.

We now proceed to study the case when dim F(D)(x) = dim 7 (D)(x} -- 1.
We begin by proving some preliminary lemmas.

LemMma 3.5. Let D C V(M) be a family of complete vector fields. If X € D,
let {@,} be the one-parameter group generated by X. Then, for every x ¢ M, and
every t € R the differential d®, maps To(D)(x) onto To(DYP(x)).

Proof. We first show that for every y € M there is an r > 0 such that,
if ve Z(D)y), then d®(z) e To(D)Py(y)) for all ¢t with 12’ <7 It is
sufficient to show that for every y € M and every v € F(D)(v) there exists an
r > 0 such that dd,(v) € To(D)( D)) for all t with | ¢! < 7. Let y € M, and
let € T((DY(y). If ¢ = Y(y) for some Y € F((D), then an casy computation
shows that there exists a neighborhood of t = 0 such that

avo) = ¥ S xo, vieoe

for all ¢ in this neighborhood, where [X® Y] =.Y, and [X®), V] ==
[X, (XD V1] for m = 1, 2,.... Since each term of the above series belongs
to Ty(DY@(»)), we have that d,(z) € Zy(D)(® () for ¢ sufficicntly small
Also, for such t we have that d®(Ty(D)(¥)) = Fo(D)P,(y)); this is so
because d®, is onc-to-one, and dim FyD)y) = dim Ty DYP(v)) (Corol-
lary 3.4). It follows casily that the set of all ¢ such that d® (T (D)(x)) =
To(DYD ()} is both open and closed. If v e Ty(D)(x), we can conclude that
D (v) € To(D)(D(v)) for all £. This completes our proof.

As we remarked earlier, F4(D) is a subalgebra of 7°(D). We will denote the
maximal integral manifold of F(D) through x by Iy(D, x). If X € 17 then, by
the previous lemma, @(I,(D, x)) is 2 maximal integral manifold of Fy(D).

LemMa 3.6. Let D C V(M) be a family of complete vector fields. Let X and
Y be elements of D, and let {D;} and {¥,} be their corresponding one-parameter
groups. If S is a maximal integral manifold of T(D) then, for any teR,
DLS) -~ PS).

Proof. Let X, Y, @,, ¥, and S satisfy the conditions of the lemma.
Let P be the maximal integral manifold of Z{1) which contains S. If
dim P =: diim S, then S :- P, and @,(S) := S = ¥,(S). Assume that
dim S == & = dim(P) — 1. We first show that there is an r 3> 0 such that
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DYS) = W,(S) whenever || < 7. Let x€.S. The mapping (s, £) — D(s)
has rank £ 4 1 at (x, 0). Let £ be a neighborhood of x in .S, and let § > 0
be such that this mapping, restricted to £ x (—38, 8), is a diffeomorphism
onto an open subset £2# of P. If ye#, let s(y) and f(¥) be such that
D)(s(3)) = y. Clearly, f is analytic' in £#, and f(y) = 0 if and only if
yef. Moreover, Xf =1 in £2#. For every t such that |#| < §, the set
D(£2) is an integral manifold of Fy(D). The vector field ¥ — X is tangent
to @(£2) and, since f is constant on P(£2), it follows that Yf = Xf on @,(Q).
Since 27 is the union of the sets ®,(2) over —8 < ¢ < 8, we conclude that
Yf= Xf=1 on 2% Let r > 0 be such that the curve  — @_,(¥,(x)),
defined on —7r < ¢ <7, is contained in £#. In addition, let » << 8. Let
2(28) = f(DP_{i(x)). Then g is analytic in (—r,#), and moreover g(f) =
F(P(x)) — t. We have that g/ = (YF)(P«(x)) — 1 = 0 and, since g(0) = 0
it follows that g = 0 on (—r7, 7). But this means that @_,(¥(x)) € 2 for all
te(—r,r). Hence, if | | < 7, the manifold @_,(W«(S)) intersects S. Since
D_,(¥«(S)) is a maximal integral manifold of JyD), it follows that
D_(FLS)) = S, and that P(S) = D«S). Let 4 be the set of all # such that
D,(S) = WP,(S) for all 7 in a neighborhood of #. Then 4 is obviously open,
and we have shown that 0 € 4. It follows easily from the preceding argument
that 4 is closed. Therefore @,(S) = W,(S) for all real ¢, and our proof is
complete.

According to the above lemma, if D C V(M) and if x € M, then the mani-
fold @,(Iy(D, x)) depends only on t, and not on the particular choice of X.
We shall denote this manifold by I,)(D, ). It is clear that I}(D, x) could be
defined as the maximal integral manifold of Fy(D) passing through y, where y
is an arbitrary point of L (D, t).

Finally, we prove a factorization property of maps that will be utilized
several times.

Lemma 3.7. Let E be a locally convex vector space, let K C E, and let C
be a convex dense subset of K. Let F' : K — I(D, x) be a continuous mapping such
that F(C) is contained in a maximal integral manifold S of To(D). Then F(K)
is contained in S, and F, as a mapping from K into S, is continuous.

Proof. If dim S = dimI(D, x), then S = I(D, x), and the conclusion
follows trivially. Therefore, we shall assume that dim S = dim I(D, x) — 1.

Let ke K, let X € D, and let {®,} be the one-parameter group induced by X.
Then, as in the proof of Lemma 3.6, we can find a neighborhood £ of F(k)
in Iy(D, F(k)), and a positive number 8, such that the mapping (s, £) — D(s)
is a diffeomorphism of 2 x (—8, 8) onto an open subset 2# of I(D, x). Let U
be an open convex neighborhood of % such that F(U N K) C £#. For each
te(—3$, 8), the set @(82) is an integral manifold of Jy(D); therefore, if
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D,(£2) intersects S, then @) is contained and open in S. Let 4 ==
{tit <8, PR C S} It follows that SN L* is the union of the sets
D,(£2), te 4. These sets are mutually disjoint and, since S is separable, it
follows that -1 is at most countable. Let ¥ — (s(¥), f(»)) be the inverse in 2*
of the map (5, t) — @,(s). Then the function g defined in U N K by g(m) =
F(F(m)} is continuous. Since F(U' N C) C .S N 2%, we conclude that g(m) € 4
forallm ¢ U n C. But 4 is at most countable, and U N C'is convex; therefore
g 1s constant on U N C. Since U N C 1s dense in U N K, we have that g is
constant on ' N K. Obviously g(k) = 0, and therefore g(m) = 0 for all
me UM K; thus F(m) € 2. This shows that £ contains a point of .S; hence
Q C S, and F(k) € S. This proves the first part of the lemma.

To prove the second part, let {k,} C K converge to k. Since F' is continuous,
F(k,) — F(k). For large n, s(F(k,)) is defined. Since s is continuous, s(F(k,))
converges to s(F(k)) in S. But g(k,) == 0, and therefore s{(F(k,)) == F(k,).
Similarly, s(F(k)) =« F(k). We have thus shown that F(k,) converges to F(k)
in .S, and our proof is complete.

Remark 3.8. 1If is clear that the preceding lemma is valid under weaker
assumptions about C and K. For instance, it is sufficient to assume that, for
every ke K and for every neighborhood U of &, there exists a neighborhood
V' of k such that ' C U and V' N C is connected.

We now state and prove the theorem towards which we have been aiming.

I'HEOREM 3.9. Let D C V(M) be a set of complete vector fields, and let
xc M. Then, for each T" > 0, L (D, Ty C I}(D, x) and, moreover, the interior
of LD, T) (relative to I,}(D, x)) is dense in L (D, T) (and is, in particular,
nonempty).

Proof. If dim F(D)(x) = dim 7 (D)(x), then we have from Corollary 3.4
that Z(D)(y) =~ .7 (D)) for all y € I(D, x). Therefore, [ (D, x) = (D, x) -
LD, x) and our conclusion follows from Theorem 3.3. Assume that
dim J(D){x) = k == dim 7 (D)(x) — 1. It is clear from Lemma 3.6 that,
if « 13 an integral curve of D such that «(0) = x, then o T") € I;* (D), x); hence,
LD, T)YC Ij/(D, x).

We now show that, if yeL, (D, T), then y is the limit of points which
belong to the interior of L (D, T). Let D = {X, ,..., X;}and let y == @(T, x),
where [T = T,and T, > 0 for 7 == 1, 2,..., m (the notations here are the
same as in the proof of Theorem 3.1). Let j = (jy,..., ) be an s-tuple of
integers between 1 and % such that the rank of t-» @(t, x) is equal to
dim 7 (D)(x) for all £ in an open dense subset £2 of RS, Let 2" = {t : t e RS,
t; > 0for == 1,..., sy N Q. Let {t,} C Q2 be a sequence that converges to 0,
and let T, -- (T, ,..., T, ., T, - I.t,1]). We can assume that [;t,!| << T,
forallp = 0. If welety, = ®(T,, @,(t,, x)), then y, €L (D, T). We next
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show that y, is in the interior of L, (D, T') relative to I,7(D, x). Since the
mapping z — @(T, , 2) is a diffeomorphism from I*(D, x) onto I,7(D, x),
it suffices to show that @(t,,x) is in the interior of L (D, | t, ). Let
Vy,={t:teRs # > 0,.,7, > 0, | t] =|t,]}. Clearly, if teV,,
then @ (t, x) eL(D, || t, ). Let F, : V, — I}%I(D, x) be defined by F,(t) =
D,(t, x). We show that I/, is analytic. Since F, is analytic as a map from V, into _
I(D, x), it suffices to show that it is continuous. But this follows from the
previous lemma, because V, is convex. The rank of t — @(t, %) is equal to
dim 7 (D)(x) at t = t,, . Since ¥, is a submanifold of R® of codimension 1,
it follows that the rank of ¥, at t, is equal to the dimension of I}%I(D), x).
'Thus, F,(V,) contains a neighborhood of F(t,) in Ij»(D, x). It follows that
D,(t, , x) is in the interior of L,(D, || t,, |}). By the previous remark we conclude
that y,, is interior to L (D, T') in I,7(D, x). There remains to be shown that y,,
converges to y in I,7(D, x). The mapping (t, s) — Dy(t, (s, x)) is continuous
as a map from R™ x R# into I(D, x). The set V = {(t,s) : ¢; > 0, s; > 0,
i=1,.,m, j=1,.,5 |[t]+|s] = T} is convex, and is mapped into
IX(D, x). Therefore, the previous lemma is applicable, and we conclude
that y, — v in I,7(D, x). This proves our theorem.

4, AppLicATIONS TO CONTROL SYSTEMS

We shall consider systems of the form
dx(t)/dt = F(x(t), u(t))

defined on an analytic manifold M. The functions # belong to a class % of
“admissible controls”. We make the following assumptions about % and the
system function F:

(1) The elements of U are piecewise continuous functions defined in [0, c0),
having values in a locally path connected set 2, 2 C R™ (£2 is locally path
connected if, for every w e 2 and every neighborhood V of w, there exists
a neighborhood U of w such that U C V, and U N 2 is path connected). In
addition, we assume that % contains all the piecewise constant functions with
values tn §2, and that every element of U has finite one-sided limits at each point
of discontinuity. % is endowed with the topology of uniform convergence on
compact intervals.

(i) F:M x Q— TM is jointly continuously differentiable. For each
ue £, F(:, u) is a complete analytic vector field on M. We know that for each
xe M, ue ¥, the differential equation

dx(t)]dt = F(x(t), u(t)), x(0) = x, 4
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has a solution defined for all ¢ € [0, §), where 8 > 0. We denote such a solution
by H(x, u, -), and we assume that I1(x, u, t) is defined for all t € [0, o).

For the above-defined control system we now state the basic controllability
concepts. We say that y € M is attainable from x € M at time t (¢ = 0), if there
exists u € % such that JI(x, u, t) = y. For each x ¢ M, we let A(x, t) denote
the set of all points attainable from x at time 2. If 0 < ¢t << o0, we define
Alx, 1) = Uger A, 5) and A(x) = Uy A(x, £). We say that the system is
controliable from x if A(x) = M, and that it is controllable if it is controllable
from every x € M. We say that the system has the accessibility property from x
if A(x) has a nonempty interior, and that it has the accessibility property if it
has the accessibility property from every x € 4. Finally, we shall say that
the system has the strong accessibility property from x if A(x, t) has a non-
empty intcrior for some ¢ > 0, and that it has the strong accessibility property
if it has the strong accessibility property from x» for every x € M.

For we @, let X, = F(*, w); from assumption (ii) it follows that X is a
complete analytic vector field on M. Throughout the remaining part of this
article we let D = {X, 1 wec @}

Lexiva 4.1, For each x € M, A(x) is contained in 1(D, x).
The proof is identical to that of Lemma 2.4, and will therefore be omitted.

Remark 4.2. It is casy to see that the control system defined by restricting
F to I(D, x) satisfies the same assumptions as the original system. Since it
can be readily verified that the map u - » I1(x, u, ¢) is continuous as a map
from % into M, it follows that this map is also continuous as a map from ¥
wnto I(D, x).

We now want to obtain a result for A4(x, ¢) which is similar to that of
Lemma 4.1. It is here that the assumption about £ will be utilized. Let 2 be
the class of piccewise constant 2-valued functions defined on [0, oc). Clearly,
# is dense in %. Moreover, the local connectedness of € implies that the
condition of Remark 3.8 is satisfied (this can be easily verified, and we omit
the proof). Thus, we can apply Lemma 3.7, with C = Z and K = %, to
obtain the following result:

Levma 4.3, Let x€ M. For each t == 0, A(x, 1) C 14D, x).

Proof. Since % contains &, we have that LD, ) C A(x, t). Let
G : % >1(D, x) be defined by G(u) == II(x, u, t). We have that G(&) ==
L,(D, t), and by Theorem 3.9, G(#) C I;}(1), x). Now our conclusion follows
immediately from Lemma 3.7, and the proof is complete.

The above lemmas combined with the theorems of the preceding section
vields the following results:
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Tarorem 4.4, Let x € M. Then A(x) C I(D, x). Moreover, for every T' > 0,
the interior of A(x, T')relative to I(D, x) is dense in A(x, T') (and, in particular,
1s nonemply).

Proof. T'he first part is just the statement of Lemma 4.1. 'To prove the
second part, we can assume that I{D, x) = M (if not, replace the original
system by its restriction to I(D, x), ¢f. Remark 4.2). Since L,(D, T) is dense
in A(x, 1), our conclusion follows immediately from Theorem 3.1.

THEOREM 4.5. Let x € M. Then, for each t > 0, A{x, t) C I}(D, x) and,
moreover, the interior of A(x, t) relative to I/(D), x) is dense in A(x, t) (and, in
particular, is nonempty).

Proof. The first part is just the statement of Lemma 4.3. To prove the
second part, we apply Lemma 3.7 to the function G of Lemma 4.3, and we
get that G is continuous as a map into Ip¥(D, x); therefore, L (D, t) is dense in
A(x, t) relative to I,(D, x). Our conclusion now follows immediately from
Theorem 3.9, and the proof is complete.

The following two controllability criteria follow immediately from
Theorems 4.4 and 4.5, and from Lemma 2.1:

CoRrOLLARY 4.6. The system has the accessibility property from x if and only
if dim 7 (D)(x) = dim M. In this case A(x, T) has a nonempty interior for
every T > 0.

CoroLLARY 4.7. The system has the strong accessibility property from x
if and only if dim Jy(D)(x) = dim M. In this case A(x, T} has a nonempty
tnterior for every T > 0.

The preceding results can be utilized to derive relationships betwcen
accessibility and strong accessibility. Even though the latter property scems
much stronger than the former, we show that, for a very large class of
manifolds (including the spheres S” for n > 1, and all compact semisimple
Lie groups, but not R®), it is in fact implied by it. On the other hand, for a
still larger class of manifolds (including R*) controllability (which trivially
implies accessibility), is sufficient to guarantee strong accessibility (the fact
that controllability implies that dim .7 (D*)(x) == n + 1 for all x was proved
by Elliott in [5]).

Consider a system on a connected n-dimensional analytic manifold M,
having the accessibility property but not having the strong accessibility
property. Let D be the family of associated vector fields. By Corollary 4.6,
dim 7 (D)(x) = n for all x € M. By Corollary 3.4 the number dimn Zy(D)(x)
is independent of x. Since this number is either # or n — 1, Corollary 4.7
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implies that dim J(D)x) = n — 1 for all xe M. Choose a fixed X € D,
and use D, to denote the one-parameter group generated by X (i.e., for every
y e M, the integral curve of X that passes through y at ¢ = 0 is the curve
t —> @ ¥)). Define a mapping F' from the manifold S x R into M by

F(s, 1) == D (s).

One shows easily that F is a local diffeomorphism onto M. Morcover,
S x Ris connected. In fact, we have (see [18] for the definition of a covering
projection):

Lemya 4.8, The map F is a covering projection.

Before we prove Lemma 4.8, we show how the results mentioned above
follow from it.

THroreM 4.9. Let M be a manifold whose universal covering space is
compact. Then every system having the accessibility property has the strong
accessibility property.

Proof. 1f the universal covering space of M is compact, then cvery
covering space of A is compact. If it were possible to have a system on W
having the accessibility property but not the strong accessibility property,
we could define, for such a system, S and F as above. It would follow that
S X R is compact, which is clearly a contradiction.

Remark. 1If n > 1, the sphere S* is simply connected (and compact}.
Therefore Theorem 4.9 applies. Also, if M is a connected compact semisimple
Lie group (for instance SO(x), if n > 2), the universal covering group of M
is also compact {7, p. 123] and, therefore, Theorem 4.9 applies in this case
as well.

THEOREM 4.10. Let M be a manifold whose fundamental group has no
elements of infinite order. Then every controllable system on M has the strong
accessibiiity property.

Proof. A controllable system obviously has the accessibility property.
Assume it does not have the strong accessibility property. Define .S and F
as before. We show that F is one-to-one. Otherwise, there would exist 5o
so € Sand a T #£ 0 such that F(sy, T} = @y(s,) = F(sy, 0) = s, . Thercfore
D,(S) = S. Define H: S X R— 8 X Rby H(s, t) := (Prls), t — T). Then
H is well defined, because $,(S) = S, and is a homeomorphism. Moreover,
if (s,2)eS X R,

F(H(s, 1)) = @_g(Pr(s)) = Dfs) = F(s, 1).

505/12{1-8
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Therefore H is a covering transformation [18, Chap. 2]. Moreover, if
s is a point of S and if ¢ belongs to R, then H™(s, 1) = (D1(s), t — mT),
so that H™(s, t) # (s, t) for every m. Let y be a curve in S X R which
joins (s, t) to H(s, t). Let = denote the fundamental group of M (with base
point F(s, t)). Then the composite § of y and F represents an element of =,
and it is easy to see that § has infinite order. This is a contradiction. Thercfore
F must be one-to-one. On the other hand, the points that are attainable from
Sy must belong to S, (= @,(S)) for some nonnegative ¢ (cf. Theorem 4.5).
Therefore, the points in S_, are not attainable, if # > 0. Thus, the system
is not controllable, and we have reached a contradiction.

Remark. 'Theorem 4.10 applies, in particular, to any simply connected
manifold, such as R”.

Proof of Lemma 4.8. We must show that every point of A/ has a neigh-
borhood that is evenly covered by F. Let me M. Since F is a local diffeo-
morphism onto, therc exist s € .S, € R, ¢ > 0 and a connected ncighborhood
U of s in S such that F(s, £) = m and that the restriction of F to U X (¢ — e,
t -1 €) is a diffeomorphism onto an open subset V' of M. We claim that V is
evenly covered. Let 4 = {r : ®(S) - S}. For ecach re 4, let U_ = @ (U).
Since @, : S — S is a diffeomorphism, it follows that U, is open in S and
connccted for each 7€ 4. We first show that, if 0 < [7--7%! < 2¢ 7€ 4,
n € A, then U, and U, are disjoint. Assume they are not. Then @,(U,) and
®,(U,) are not disjoint, for any 7. Choose T such that both 7" -+ rand T + ¢
belongto (t — ¢, t -+ €). Letu = @ _(4,) = D1 ,.,(,) be a common element,
where %, and u, belong to U. Then the points (4, , T+ 7) and (u,, T + )
belong to U x (¢ — €, t 4 ¢€). Since the restriction of F to this set is one-to-
one, it follows that 7 :. 7, which is a contradiction. For each 7€ 4, let
W.= U, x({t—7—¢t — 1+ ¢€). We shall conclude our proof that ¥
is evenly covered by showing:

(a) the sets W, are open, connected and pairwise disjoint,
(b) for each r € A, IF maps W, diffeomorphically onto V, and

(c) the inverse image of V under F is the union of the scts W, .

The first two assertions of (a) are obvious. If 7 and 5 belong to 4, and
7 % ), then either i 7 — 5| < 2eor | 7 — 7| = 2e. In the first casc W, and
W, must be disjoint, because U, and U, are disjoint. In the second case,
W, and W, are also disjoint, because the intervals (f — 7 — ¢, 2 — 1 4 ¢€)
and {(t — n — ¢, t — 7 -} €) cannot have a point in common.

To prove (b), takere 4. Define G : U X (t — ¢, t -~ €) > W, by G, o) ==
(D,(u), 0 —- 7). Clearly, G is a diffeomorphism from U X (t — ¢, t + €) onto
W, . Moreover,ifue U, t — ¢ < o <t+ ¢ then F(G(y, 0)) == @,_(P.(v)) =
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@ (u) = F(u, ¢). Since the restriction of F to U x (¢ — ¢, + ¢) is a diffeo-
morphism onto V, the same must be true for the restriction of F to W, .

Finally, we prove (c). Let u € S, ¢ € R be such that F(u, o) € V. Then there
exist W' eU, o' e(t —e t+ €) such that F(u',o") == F(u, ). Therefore
u == @ _(u). This implies, in particular, that 7 = ¢’ — o belongs to 4,
and that ue U,. Moreover, since t — ¢ <o <t 5 ¢ it follows that
t—7—¢<o<t—7-+ e Therefore (u,0)c W, .

The proof of Lemma 4.8 is now complete.

5. EXAMPLES

ExampPLE 5.1. Let M =R", @ =R™ and let F: M x @ — TM be
defined by F(x, u) = Ax 4- Bu, where A and B are, respectively, n X n and
n X m real matrices. We have that D == {4(-) 4+ Bu: u e R™}. Let b, denote
the i-th column of B. Then, as shown by Lobry [16], .7 (D)(x) contains the
vectors

Ax £ b;, 2=Ab, ..., 2 A", i=1,., m

It is not difficult to see that the above set of vectors forms a system of
generators for J (D)(x). From Corollary 4.6 we get that A(0, ¢) has a non-
empty interior in R” if and only if {5, , +-4b; ,..., -=4"1b; ¢ == 1, 2,..., m}
has rank n; equivalently, A(0, t) has a nonempty interior in R* if and only if
rank[B, 4B,..., A" B} = n.

Since, obviously, Z(D)(0) == J (D)0), we conclude that A4(0, t) has a
nonempty interior whenever A(0, t) does. The above statements, along with
the fact that A4(0, ¢) and A(0, t) are linear subspaces of R”, imply that, if
rank[B, 4B,..., A*'B] ==n, then for each t >0 A(0,¢t) == A(0,t) =
A(0) = R*(Kalman [12]). Thus, in this example, the accessibility property is
equivalent to controllability. This is, of course, not true in general.

ExampLE 5.2. Let M =R" Q ={ucR":0 <y, < 1,7 = 1,.., m},
and let F(x, u) = (Ao + 1oy Aau)x for all (x, u) € R* x Q, where 4 ..., 4,,
are n X n real matrices. Then D is the set of all vector fields X, where
X (x) = (Ag + Toey wA)x. The set M of all # X n real matrices is a Lic
algebra, with the bracket defined by [P, O] -= PQ -— OP. To each matrix P
there corresponds a vector ficld V(P) defined by V(P)(x) = Px. It is easy to
check that V([Q, P]) = [V(P), V(Q)]. Using this fact, the spaces 7 (D)(x)
and Jy(D)(x) can be readily computed:

T(D)(x) = {Px: PeL},

and
Fo(D)x) = {Px : PelL},
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where L is the Lie algebra spanned by 4,,..., 4,, , and L is the ideal of L
spanned by A4, ,..., 4,,. We remark that for this example the theory of
Section 4 is valid even if U is the set of all bounded and measurable Q-valued
functions. This is so because the only properties of the class of admissible
controls that were utilized in Section 4 were: (a) that the class of piecewise
constant controls is dense in % (in the topology of uniform convergence),
and (b) that, if {z_} are elements of % that converge uniformly to u, then
II(u,, x, t) converges to I1{u, x, t).

In our example, both (a) and (b) remain valid if the topology of uniform
convergence is replaced by that of weak convergence. This is easy to verify,
and we shall not do it here (see Kudera [14]). Moreover, the set of 2-valued
measurable functions defined in [0, T'] is weakly compact. It follows that the
sets A(x, T), A(x, T) are compact for each T > 0. Denote their interiors
(velative to I(D, x) and I,7(D, x), respectively) by int A(x, T), int A(x, T).
It follows that A(x, T) is the closure of int A(x, T), and that A(x, T) is the
closure of int A(x, T'}. Therefore, our results contain those of Kudera (in this
connection, see also Sussmann [21]).

Remark. The result of the preceding example is a particular case of a
more general situation. Let G' be a Lie group, and let M be an analytic
manifold on which G acts analytically to the left. Then there is a homomor-
phism X from the Lie algebra of G into V{(M), defined by

A(X)(m) = (d/dt)[exp(X) - m],

the derivative being evaluated at ¢ = 0. If X, ,..., X, belong to the Lie algebra
of G, we can consider the control problem

d E ,
5 = Xo@®) + Y X/ (),
=1

where X, = AX,). Example 5.2 results by letting G = GL{n, R) and
M = R

ExampLE 5.3. This example shows that the analyticity assumptions are
essential. Consider the following two systems defined in the (x, ¥) plane:
(S %= filx,y,u),
5/ - gl(x> ¥, u),
and
(Sy) * = folx, 3, u),
¥ = g%, ¥, u).
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Let fy == f, = 1, g, = 0, and gy(x, v, u) = p(x) where @ is a C” function
which vanishes for --oc < x < 1, and which is equal to | for x > 2. It s
clear that for (S;) the set A((0, 0)) is the half line {(x,y):y -=0,x = 0}
while, for (S,), A((0, 0)) has a nonempty interior. However, both systems are
identical in a neighborhood of (0, 0).

Al
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