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In this article we study the controllability of nonlinear systems of the form 

Our objective is to establish criteria in terms of F and its dcrivativcs at a 
point x which will give qualitative information about the sets attainable 
from x. The study is based primarily on the work of Chow [4] and Lobry [16], 
although it is similar in its approach to works by other authors in that it 
makes systematic use of differential geometry (for instance, see Hermann [8,9], 
Haynes and Hermes [6], Brockett [2], etc.). 

The state variable s is assumed to take values in an arbitrary real, analytic 
manifold M, rather than in R”. We chose this generalization because it 
creates no essential new difficulties while, on the other hand, it allows for 
certain applications which are not commonly treated in control theory. For 
instance, when iV is a Lie group, then the present results can bc specialized 
to obtain more detailed controllability criteria. Control problems on Lie 
groups were first considered by Brockett in [2], and will be treated in a 
forthcoming paper by the authors. 

Most of the recent studies on controllability of nonlinear systems have 
essentially dealt with symmetric systems, i.e., systems of the form (+) with 
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96 SUSSWASK AND JUKDJEVK 

the property that F(x, -u) =-- -P(x, U) (Hermann [9], Hayncs and Hermes 
[6], Lobry [16]). A s remarked by Lobry in [16], the consideration of svm- 
metric systems often excludes interesting situations arising from mechanics. 
In these cases the system is of the form 

dxjdt : A(x) -(- H(x) . u. 

A notable exception is the work by Lobry [17]. Lobry stated (and proved 
for the case of two vector fields in Rs) the result for nonsymmetric systems 
that appears here as Theorem 3. I. 

Our results apply to nonsymmetric systems. We obtain some general 
information about the geometric structure of the attainable sets showing that 
they “practically” arc submanifolds (see Theorems 4.4 and 4.5 for the precise 
statements). This information yields a complete answer to the problem of 
deciding when the sets attainable from a point x have a nonempty interior. 
The criteria obtained involve purely algebrnic manipulations of F and its 
derivatives (of a11 orders) at the point x (see the Remark below). 

In particular, our results contain those of KuCera [14]. In this connection 
we observe that our proofs are of interest even for the case treated by KuEera 
(see Sussmann [21]). 

We have omitted the consideration of nonautonomous systems; they can be 
treated analogously by the familiar procedure of reduction to an autonomous 
system (i.e., by considering the state variable to be defined in &I x R). 

The organization of the article is as follows: in Section 2 we introduce 
notations and basic concepts; in addition, we quote some well-known basic 
results which will be used later. In Section 3 we prove our main results in 
differential geometric terminology. 

In Section 4 WC apply these results to control systems. We derive the 
algebraic criteria mentioned above (Corollaries 4.6 and 4.7), and we prove two 
“global results”: WC show that, for a large class of manifolds, accessibility 
(i.e., the property that, for any given X, the set of points attainable from x 
has a nonempty interior) implies strong accessibility (i.e., that for any given x 
and any given fixed positive t, the set of points attainable from x at time t has 
a nonempty interior). We also show that, for a still larger class, including 
the Euclidean spaces, controllability implies strong accessibility. 

Finally, Section 5 contains examples. We show how our results can be 
used to derive the classical controllability criteria for the system 

dsjdt = Ax + Bu. 

N’e also derive the results of KuEera and indicate some generalizations. 

Remark. An assumption that is made throughout the article is that P is an 
analytic function of X. ‘rhis guarantees that all the information about the 
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system is actually contained in F and its derivatives (of all orders) at a given 
point x. The analyticity assumption cannot be relaxed without destroying 
the theory (cf. Example 5.3). 

Another assumption that we make is that the trajectories of the system 
arc everywhere defined. As opposed to the previous one, this assumption is 
not essential (except for the “global” Theorems 4.9 and 4.10). We use it, 
however, because it considerably simplifies all the proofs. 

2. PRELIMINARIES 

We shall assume that the reader is familiar with the fundamental notions 
of differential geometry. All the definitions and basic concepts utilized in 
this paper can be found in standard books, (for instance [l, 3, 7, 13 and 191). 

The following notations will be used throughout: 

R the set of real numbers. 
R” n-dimensional Euclidean space. 
.V, the tangent space to the manifold M at the point x. 

TM the tangent bundle of the manifold M. 
V(M) the set of all analytic vector fields on the analytic manifold J/I. 

We will regard V(M) as a Lie algebra over the reals. For any X and 1; in 
V(M), we will denote the Lie product by [X, Y] (i.e., [X, Y] =:- XY -- YX). 
All the manifolds will be assumed to be paracompact. Recall that a sub- 
manifold of a paracompact manifold is paracompact. Also, a connected 
paracompact manifold is a countable union of compact sets. These facts imply 
(cf. Lobry [16, p. 5891): 

LEMMA 2.1. Let M be a (paracompact) manifold of dimension n. Let S be 
a k-dimnsional connected submanifold of M. If k < n, thea the set of points of S 
has an empty interior in M. 

A subset 1) of V(M) will be called involutive if, whenever X and Y belong 
to 11, then [X, Y] also belongs to D. A subatyebra of V(M) is an involutive 
subspace. Let D C V(M). An integral manifold of D is a connected sub- 
manifold S of M with the property that S, = Z(D(x)) for every .\ E S, 
where D(x) ---- {X(x) : X E D}, and where 3’(D(x)) is the subspacc of M, 
spanned by D(s). We state the following basic result about integral manifolds: 

lJ~~~~~~ 2.2. Let D be an involutive subset of V(M), and let x E ill. Then x 
is contained in a unique maximal integral manifold of D (here “maximal” means 
“maximal with respect to inclusion”). 
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This result is classical if the dimension of P’(D(x)) is the same for each 
x E iVZ (Chevalley [3]). For a proof in the general case, see Lobry [16]. 

I’D C V(M), we denote the smallest subalgebra of V(M) which contains D 
by F(D), and the maximal integral manifold of F(D) through x by I(D, x). 
Recall that, if X is a vector field on M, then 01 is an integral curve of X if OL 
is a smooth mapping from a closed interval I,1 C R, into M such that 

da(t)/dt = X(a(t)) for all t E I, 

DEFINITION 2.3. If D is a subset of V(M), then an integral curve of D 
is a mapping ol from a real interval [t, t’] into M such that there exist t = 
to < tl < *.. < tk = t’, and elements X, ,..., X, of D with the property 
that’ the restriction of 01 to [t.- z r , ti] is an integral curve of Xi for each 
i = I, 2,..., k. We have the following elementary fact: 

LEMIMA 2.4. Let D C V(M). Let a! : [to , tl] + M be an integral curve of D, 
and Zet a(t) = xfo~ some t E [t,, , tI]. Then, a(s) E I(D, x)for all s E [to , tJ. 

Proof. It is sufficient to consider the case when 01 is an integral curve of X, 
X E D. For each maximal integral manifold S of F(D), let J(S) be the set 
of all s E [t, , tJ such that a(s) E 5’. From the local existence and uniqueness 
of solutions of ordinary differential equations it follows that, ifs E J(S), then 
there exists Y > 0 such that (s - r, s + r) n [to, tr] C J(S). Thus, J(S) is 
open relative to [to , tr]. Since the maximal integral manifolds of F(D) are 
disjoint, we have that, for some maximal integral manifold S, [to, tJ C J(S). 
But a(t) EI(D, 3); therefore, our proof is complete. 

Chow’s theorem provides a partial converse to the above lemma. If 
D C V(M), then D is symmetric if, whenever XE D, -X also belongs to D. 
We can now state Chow’s theorem as follows: 

LEMMA 2.5. Let D C V(M) be symmetric, and let x E M. Then, for every 
y EI(D, x) theve exists an integral curve DL : [0, T] + M of D, with T > 0, 
such that a(O) = x and a(T) = y. 

In other words, every point of the maximal integral manifold of F(D) 
through x can be reached in positive time by following an integral curve of D 
having x as its initial point. 

DEFINITION 2.6. Let D C V(M), and let x EM. If T > 0, then, for any 
y E M, y is D-reachable from x at time T if there exists an integral curve 01 
of D defined on [0, T] such that 01(o) = x and al(T) = y. The set of all 
points D-reachable from x at time T is denoted by L,(D, T). The union of 
L,(D, t) for 0 < t < co (respectively for 0 < t < T) is denoted by L%(D) 
(respectively, L,(D, T)). 
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3. INTEGR~ILITY 0~ FAMILIES OF ~~XALYTIC VECTOR FIELD3 

As an introduction to the general situation we first consider the cast when D 
is a symmetric subset of r(iV). Chow’s theorem can be utilized to obtain 
a neccssarv and sufficient condition for L,(f)) to have a nonempty interior in 
M. Let 7; = dim M =: dim.Y(f))(x). ‘IYhen I(L), X) is an n-dimensional 
submanifold of M, and hence is open in M. Bp Chow’s theorem we have 
that L,(D) 5 : I(L), x). We conclude that L,(D) is open in :1f. Conversely 
(and without invoking the symmetry of D), if dim Y(n)(x) < n, then r(f), x”) 
is a connected submanifold of AZ of dimension less than n; then from 
Lemma 2.1 it follows directly that r(D, X) h as an empty interior in M. Since 
L,(D) C l(L), x), L,(D) also has an empty interior. Thus, if D is symmetric, 
a necessary and sufficient condition for L,(D) to have a noncmpty intcriol 
in M is that dim.?(D)(x) = dim AZ. Moreover, this condition is necessary 
even in the nonsymmetric case (Lobry [16]). \$ ;c shall show that it is also 
sufficient. For this purpose we shall assume that the elements of D arc 
complete-- -recall that a vector field X is complete if the integral curves of X 
are defined for all real t [13, p. 131. 

'THEOREM 3.1. Let M be un n-dimensional analytic manifold, and let 
II C C-(ill) be a family of complete zector fields. A necessary and sujtkienf 
condition for L,(D) to haae a nonempty interior in M is that dim .?(D)(X) = n. 
;loreoaer, if this condition is satkjied, then for each T ;> 0, the interior qf 
L,(L), T’) z’s dense in L,(D, T) [thus, in particular, L,(L), T) has a nonempty 
interior]. 

Proof. \%‘e alread!; know that the condition of the theorem is necessary. 
So WC assume that dimY(D)(x) =.- n, and we prove the second statement. 
Clearly, this will imply that L,(D) h as a noncmpty interior in $1. Without 
loss of generality we can assume that T> is finite. Let D = {X, ,..., S,). 
For each i -.-= 1,2,..., k, Ict Qi(t, .) be the one-parameter group of diffeo- 
morphisms induced by Xi (i.e., t + ai(t, y) is the integral curve of Xi which 
passes through y at t =- 0; the fact that it is defined for all real t follows 
from the completeness of XJ. If m is a natural number, t =- (t, ,..., tm) is an 
element of R”, and i =-: (i1 ,..., i,,) is an m-tuple of natural numbers between 
I and k, then we denote the element @$,(t, , Qi,(t, ,..., Qi,(tIIL , X) ...)) by 
Qi(t, x). Let TIZD be the family of vector fields obtained from I> by adjoining 
the vector fields - X, ,..., -X, to I). Then, :_‘1T) is symmetric, and 
dim :Y( IJ.Z))(~) -= n. From Chow’s theorem we conclude that L,(&D) is 
open in M. Clea+ the elements of L,( &D) are exactly those elements of A3 
which are of the form @,(t, X) for some m, some m-tuple i, and some t E R”. 
For each i, and for each n;ltural number X > 0, let A(i, N) be the set of all 
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points of J4of the form Qi(t, x), where /) t // < N (here /I t I/ = j tl 1 + ... + / t, I). 
Since A(& N) is the image of the compact set (t : jj t 1) < N} under the con- 
tinuous mapping t + @,(t, x), we have that A(i, N) is compact. Also, since 
L,(hD) is the union of the sets A(i, N) (taken over PZ, i and N), it follows 
from the category theorem that, for some i and N, the set A(i, N) has a 
nonempty interior in A!J. For such an i, let F: .l?” -+ M be defined by 
F(t) = dii(t, x). Then F is an analytic mapping whose image has a non- 
empty interior in A4. By Sard’s theorem (Sternberg [19]), the differential 
dF, of F at t must have rank n for some t E R”. Since dF, depends analytically 
on t, it follows that the set .C?* = {t : t E R”, rank dF, < n> has an empty 
interior. Let Q = R” - 9s. Then Q is open and dense in Rm. 

Let T > 0, and y E L,(D, 7’). We now show that y is in the closure of 
the interior of L,(D, T). It is clearly sufficient to assume that y EL,(D, t), 
where 0 < t < T (for each point of L,(D, T) is in the closure of (J {L,(D, t) : 
0 ,( t < T)). Let y = oji(s, x) where j = (j, ,..., j,), s = (sl ,..., s,), 

s, > o,..., s,>O,ands,+..‘+s,=t.Let 

77 = 12 n (t : 11 t/l < T - t} n {t : tl > O,..., t, > O}. 

U i’s open, and its closure contains the origin 0 of R”. Since dF, has rank n at 
each point t E U, it follows that F(U) is open. Let V = {djj(s, F(t)) : t E U). 
V is the image of F(U) under the diffeomorphism x + @$(s, x); therefore, 
V is open in M and, moreover, every element of V is D-reachable from x 
at time I/ s /I + (I t jj = t + Ij t !j < T (h ere we use essentially the fact that 

4 ,***> t, are nonnegative). It remains to be shown that y belongs to the closure 
of V. Let (ta} be a sequence of elements of U which converges to 0. Then 

lim Q&s, F(Q) = D&s, F(0)) = @Js, x) = y. 

This completes the proof of the theorem. 
We now want to state an analogous theorem for the sets L,(D, T). For 

this purpose, we shall introduce a Lie subalgebra To(D) of Y(D) which will 
be related to these sets in the same way as Y(D) is related to the sets L,(D, T). 
The aim of the following informal remarks is to motivate our definition of 
YO(D). We shall ignore the fact that time has to be positive. Moreover, we 
shall assume, for simplicity, that D consists of three vector fields X1 , X, 
and X, . Let @I , Qz and @s be the corresponding one-parameter groups. It is 
clear that Y(D) has the following “geometric interpretation”. Y(D)(x) is, 
for each x E M, the set of all limiting directions of curves through x that are 
entirely contained in L,(D). Thus, for instance, if i = 1, 2, 3, then all the 
points in the curve t ---t ai(t, x) are attainable from x (recall that we are 
forgetting about positivity), and this is reflected in the fact that X,(x) belongs 
to Y(D)(x). Similarly, the curves cz&t) = @%(--t, Qj(-t, dji(t, djj(t, x)))) are 
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also contained in L,(D). By the well-known geometric interpretation of the 
Lie bracket (cf. Helgason [7, p. 97]), the limiting direction of yii is [X< , X,](x) 
(after a reparametrization). Thus, it is clear why [Xi, Xj] belongs to F(D). 
Obviously, a similar argument works for the brackets of higher order. The 
geometrical meaning of r(D) is now obvious. 

If 5;(I)) is going to play the desired role it is clear that &(D)(x) will have 
to he the set of all limiting directions of curves y through .x such that y(t) is 
“attainable from x in zero units of time” for all t. Notice that the curves qj(t) 
of the preceding paragraph have this property. Indeed, a(t) can be reached 
from x hy “moving forward” in time 2t units, and then “backward” another 
2t units. This shows that the vector fields [Xi , Xi] arc reasonable candidates 
for membership in 9<(D). A similar argument applies to higher order 
brackets, such as [Xi , [Xj , X,]], etc. On the other hand, a vector field such 
as Xi should not be included in ,FO(D) by definition, because WC do not know 
whether the points Qi(t, x), t -+ 0, can bc reached from x in 0 units of time 
(but, of course, it may happen that some Xi will belong to ,5,(D) anyhow; 
for instance, we could have ~, = [X2, X,]). However, the vector fields 
Xi -. Xj will have to be included, because (Xi --- X,)(x) is the limiting direction 
of the curve t -+ Dj( --t, @,(t, x)). I n other words, the subspace generated bs 
the diflerences Xi .- Xj mill haze to be included in .%(D). This s&space can 
also bc defined as the set of all linear combinations h,X, + X,X, + A,.& 
such that A, -(- A, .- A, = 0 (that all the differences X, - Xj are linear 
combinations of this type is trivial; conversely, if Y = X,X, 7. X,X, ;- X,X, 
with A, T A, C A, = 0, then Y -.-= h,X, f XJ, -! ( -A, - A,) X, , i.c., 
T’ = hl(Xl -- Xx) -1. X,(X* -- Xx)). 

WC conclude that the reasonable candidates for membership in .T,(D) arc: 
(i) all the brackets [Xi, Xj], [Xi, [Xj , X,:]], etc., and (ii) all the sums 
X,X, 1 X,X, T- X,X-, , where C Xi =-: 0. Sotice that the subspace generated 
by (i) is clearly the derived algebra of F(I)) (by definition, the derived algebra 
of a Lie algebra L is the subalgcbra L’ of 1, generated by all rhc brackets 
[S, I.], X EL, Y G L; it is easy to check that L’ is in fact an ideul of 1,; cf. 
IHelgason [7, p. 1331). 

Wc now return to our formal development. Let F’(D) denote the derived 
algebra of F(D). Wotivated by the previous remarks, we define -y<,(D) to be 
the set of all sums X - Y, where X is a linear combination Cf-, X,X, with 
-Y, ,..., X,, E LI and z Xi -= 0, and whcrc Y E F’(D). It is obvious that &(D) 
is an ideal of .F(D). One shows easily that F(D) is the set of all vector fields 
of the form IF..=, AiXj f I’, where X, ,..., X, belong to I), Y belongs to 
.F’(D), and h 1 ,..., A, are reals (hut A, 1.. ... (- A, need not be zero). From 
this it follows immediately that &(L)) is a subspace of 5(D) of codimension 
zero or one. The codimension will be zero if and only if some X E I> belongs 
to ,&o(f)) (in which case every XE D will belon g to .FO(lo(n)). Similarly, for 
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each x E n/l, if k = dim F(D)(x), then the dimension of To(D)(x) will either 
beKorR- 1. 

We shall also be interested in associating to each D C V(M), a set D* of 
vector fields in the manifold n/r x R. Recall that the tangent space to M x R 
at a point (x, Y) (x E n/r, I E R) is identified, in a natural way, to the direct 
sum M, OR,. If x E V(M), YE V(R), we define the vector field 
X@Y~V(n/rxR)by 

(X 0 Y>(‘% r> = (X(x), Y(y)>. 

The set D* is defined to be the set of all vector fields X @ a/at, where X E D, 
and where a/at is the “canonical” vector field on R (i.e. (aj&)f =f’). 
Using the identity [X @ X’, Y @ Y’] = [X, Y] @ [X’, Y’], one shows 
easily that Y’(D*) is the set of all vector fields of the form X @ 0, where 
X ET’(D) and 0 is the zero vector field. Therefore, r(D*) is the set of 
vector fields of the form 

where X, ,..., X, belong to D, Y E Y(D), and h, ,..., & are scalars, 

THEORENI 3.2. Let M be an analytic n-dimensional manifold, and let D be 
a family of complete analytic vector jields on M. Let x E M, and let T > 0. 
Then L,(D, T) ha-s a nonempty interior in M if and only if dim &J(D)(x) = n. 
Moreover, in this case, the interior of L,(D, T) is dense in L,(D, T). 

Proof. The main idea in this proof is to modify our problem so that we 
can “keep track” of the time elapsed while we move along an integral curve 
of D. We shall then apply Theorem 3.1 to the modified system. We shall 
work in the manifold M x R. As in the preceding paragraphs, we let the 
family D* of vector fields on M x R be defined by D* = (X @ (a/at): X E D}. 
It is clear that there is a one-to-one correspondence between integral curves a: 
of D such that a(O) = x, and integral curves /3 of D* such that /3(O) = (x, 0). 
This correspondence is given by assigning to each curve 01 the curve 
t --t (a(t), t). It follows that y EL,(D, T) if and only if (y, T) E L(,,,,(D*, T). 
We show that L,(D, T) has a nonempty interior in M if and only if L(,,,)(D*) 
has a nonempty interior in M x R. Assume that L,(D, T) has a nonempty 
interior in M, and let Y be a nonempty open set such that V C L,(D, T). 
Let X E D, and let Cp be the one-parameter group of diffeomorphisms of M 
generated by X. Consider the mapping P : V x R -+ M x R defined by 
F(v, t) = (@(t, ZI), T + t). It is immediate that the differential of F has rank 
n + 1 everywhere. Therefore F maps open sets onto open sets. Since 
F(V x (0, m)) C L6,,)(D*), we conclude that Lc,,~,(D*) has a nonempty 
interior in M x R. 
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To prove the converse, assume that Ltz,a)(D*) has a nonempty interior in 
52 x R. By Theorem 3.1, for each t with 0 < t < T, LoJDy, t) has a 
noncmpty interior in 41 x R. Let V be a nonempty open subset of M, and 
let W be a nonempty open subset of R such that 1, x WC L(,,,)(D*, t). 
Let s E W. Since I/’ x {s) C Lt,,,,)(D*, t), we conclude that C’C L,(I), s). 
Let X c D, and let @ be the corresponding one-parameter group on A’. 
Denote the mapping y -+ @(T .- s, y) by G. Then G( I;) is open. Since G(V) 
is contained in L,(D, T), it follows that L,(D, T) has a nonempty interior. 

We conclude from Theorem 3.1 that L,(D, 7’) has a nonempty interior if 
and only if dim .F(D*)(x, 0) = 7 n + 1. T o complete the proof of the first 
part of our statement, we must show that this last condition holds if and only 
if dim .FJl>)(x) 1 1~. We recall, from the remarks preceding this proof, 
the fact that every P E F(P) can be expressed as 

where X t ,..., X, belong to ,!I and YE F’(D). Sow assume that 

dim .F(D*)(x, 0) = n -+ 1. 

Let v E 114, . l’hen (ZI, 0) must belong to F(D*)(x, 0), so that (v, 0) = 
Xx(x, 0), where X* E .F(D”). Th en formula (#) holds for suitable Ai , 
Xi , Y. Therefore, 

and 

v = (1 &Xi -1. Yj (x), 

The last equality implies that 1 hi = 0, so that the vector field C A,& -r- Y 
belongs to F”(D). Thus u E &(D)(x). We have shown that AI, C .FO(U)(x). 
Therefore the dimension of .Ts(D)( x IS n. Conversely, let dim &(D)(x) =-= n. ) . 
Let v E M, . Then F E &(D)(x), so that 

v = (c &Xi f Yj (A-), 

where the Xi belong to D, Y E .F’(Z)) and x Ai -= 0. Therefore, 

(v, 0) = ((c &Xi + Yj 8 (c Xi) -gj (x, 0) 

=. (1 Ai (Xi (iJ &j ‘- Y 0 0) (x, 0). 
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This shows that (q0) belongs to r(D*)(x, 0). Pick an X E D. Then 
(X @ a/&)(x, 0) belongs to D*(x, 0) by definition, and (X @ 0)(x, 0) belongs 
to S(D*)(x, 0) by the previous remarks. Therefore (0, a/at(O)) belongs to 
F(D*)(x, 0). We have thus shown that F(D*)(x, 0) contains all the vectors 
(q 0), v E iV,, , and also the vector (0, a/&(O)). Therefore F(D*)(x, 0) = 
(M x R)($,a) , so that dim F(D*)(x, 0) = n + 1 as stated. 

We now prove the second part of the theorem. As we remarked earlier, 
there is no loss of generality in assuming that D is finite. Let y EL,(D, T). 
Using the notations of the proof of Theorem 3.1, let y = Qi(t, x), where 
i = (il ,..., &), and where t E R” is such that ti > 0 for i = I,..., m and 
/j t Ij = T. Let {sic} C (0, tnz) be such that lim,,, sk = 0. Since our condition 
for L,(D, T) to have a nonempty interior is independent of T, we conclude 
that L,(D, t) has a nonempty interior for all t > 0. In particular, for each 
Fz > 0, there exists xle which belongs to the interior of L,(D, sJ. Let 
ti, = (t1 ,..., t,-i , t, - sk), and let ylc = Qi(t, , xk). For each K > 0, 
yle belongs to L,(D, T); since dji is a diffeomorphism, yrc is in the interior of 
L,(D, T). Also, xk ---f x as k -+ cc because D is finite and sic -+ 0. Since Bi is 
continuous in both variables, and since trc + t, we have that yk -+y, and 
our theorem is proved. 

The results is the previous theorems can be utilized to obtain information 
about the sets L&D, T) and L,(D, T), even when dim F(D)(x) < n. 

THEOREM 3.3. Let D C V(M) be a family of complete vector jelds. Then, 
for each T > 0, the set L,(D, T) is contained in I(D, x). Moreover, in the 
topology of I(D, x), the interior of L,(D, T) is dense on L,(D, T). L,(D, T) has 
a nonempty interior in I(D, x) if and only if dim &(D(x)) = dim F(D)(x) and, 
in this case, the interior of L,(D, T) is dense in L,(D, T). 

Proof. If XEF(D), then X is tangent to I(D, zc). Thus there is a well- 
defined restriction X# of X to I(D, x). We denote the set of all such restrictions 
of elements of D by D+. Since [X, Y]# = [X+, Y#], it follows that Y(D)# = 
Y(D#). Analogously, we have that 9&D)+ = YQ(D#). If we now apply the 
previous theorems to the family D# of vector fields in I(D, x), we get all the 
conclusions of the theorem. 

COROLLARY 3.4. Let S be a maximal integral manijold of r(D). Then the 
dimension of &(D)(x) is the same for all x E S. 

Proof. If dim F(D)(x) = k then, for each x E S, the dimension of &(D)(x) 
is either k or k - 1. We show that, if dim Y&D)(x) = k - 1 for some x E S, 
then dim YO(D)(y) = k - 1 for all y E S. Let D be a nonempty, open 
(relative to S) subset of L,(D) (th’ is is possible by Theorem 3.3). We first 
show that, if y E 9, then dim &(D)(y) = k - 1. If this were not the case, 
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then necessarily dim &(D)(y) =_: K. Then L,(I), t) would have a nonempty 
interior in S for all t > 0. This would imply that L,(D, t) has a nonempty 
interior in S. But by our assumption this is impossible. Thus, dim .7,(D)(y) = 
k --. 1 for ally E Q. Since S is connected, and Q is open in S, WC have that 
dim FO(D)(y) : k -- 1 for all y E S: therefore, our statement is proved. 

\Ve now proceed to study the case when dim yO( D)(x) = dim .F(~)(x) - - I. 
We begin by proving some preliminary lemmas. 

LEMMA 3.5. Let D C V(dl) be a farnib of complete sector jieids. If X E II, 
let (Ot) be the one-parameter group generated by X. Then, for eoery x E M, and 
every t E R the dzjferential d@, mups qJ(D)(x) onto .~<(D)(@pt(x)). 

Proof. W’e first show that for every y E M there is an r :.> 0 such that, 
if TJ E .FO(D)(y), then d@,(a) E .&(D)(Qp,(y)) for all t with 1 t j < Y. It is 
sufficient to show that for every y E M and every v E <y<(B)(y) there exists an 
I’ > 0 such that d@,(w) E &(D)(@,(y)) for all t with i t I < r. Let y E M, and 
let ‘L; E .FO(D)(y). If z’ =- Y(y) f or some Y E &(D), then an easy computation 
shows that there exists a neighborhood of t = 0 such that 

d@,(v) = f hy [F’, Y](@((y))t” 
iL” 1. 

for all t in this neighborhood, where [X(O), Y] =-- Y, and [XfnJ, Y] 7 
[X, [X(+l), Y]] for n = 1, 2 ,... . Since each term of the above series belongs 
to &,(D)(@,(y)), we have that dQi(a) E Fo(D)(@,(y)) for t sufficiently small. 
Also, for such t we have that d@,(,70(D)(y)) -= .yo(D)(@,(y)); this is so 
because dDi, is one-to-one, and dim Fo(l>)(y) := dim *Fo(D)(ot(y)) (Corol- 
lary 3.4). It follows easily that the set of all t such that d@,(?JD)(x)) = 
~~i(D)(@s,(x)) is both open and closed. If z’ E .To(D)(x), WC can conclude that 
Qt(u) E Fo(D)(@l(c)) for all t. This completes our proof. 

As we remarked earlier, FO(ll) is a subalgebra of y(D). WC will denote the 
maximal integral manifold of Fe(D) through x by I,(D, x). If X E I) then, b> 
the previous lemma, Ql(l,,(D, x)) is a maximal integral manifold of To(D). 

LEMW. 3.6. I,et lI C V(M) be a family of complete z’ector$eZds. Let X and 
Y be elements of D, and let {@J and {Y,J be th eir corresponding one-parameter 
groups. If S is a maximal integral manifold qf To(D) then, for any t E R, 
Ot(S) =- Yf(S). 

Proof. Let X, Y, Q1, ‘f/, and S satisfy the conditions of the lemma. 
I,et 1’ be the maximal integral manifold of 9(D) which contains S. If 
dim P =. dim S, then S .- P, and Qt(S) ..= S = Yr((S). ilssume that 
dim S :-- k = dim(P) - 1. We first show that there is an r 1~ 0 such that 
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@$(S) = Yt(S) whenever 1 t 1 < Y. Let x E S. The mapping (s, t) + Q,(s) 
has rank K + 1 at (x, 0). Let ~2 be a neighborhood of x in S, and let 6 > 0 
be such that this mapping, restricted to D x (-8, 6), is a diffeomorphism 
onto an open subset Q* of P. If y E &?*, let s(y) and f(y) be such that 
@f(,,(s(y)) = y. Clearly, f is analytic in !2#, and f(y) = 0 if and only if 
y E Q. Moreover, Xf = 1 in a#. For every t such that / t 1 < 6, the set 
at(Q) is an integral manifold of Tao(D). The vector field Y - X is tangent 
to Q*(Q) and, since f is constant on Q,(Q), it follows that Yf = Xfon Bt(Q). 
Since Q# is the union of the sets Qt(sZ) over -4 < t < 8, we conclude that 
Yf = Xf E 1 on Q*. Let Y > 0 be such that the curve t + @-&Pt(~)), 
defined on --Y < t < Y, is contained in 9#. In addition, let T < 6. Let 
g(t) = f (@...t(#t(x)). Then g is analytic in (-Y, Y), and moreover g(t) = 
f (Y,(x)) - t. We h ave that g’ = (Yf)(Yu,(x)) - 1 = 0 and, since g(0) = 0 
it follows that g E 0 on (-Y, r). But this means that @-#Pi(x)) E 8 for all 
t E (-Y, r). Hence, if / t 1 < Y, the manifold @-@P,(S)) intersects S. Since 
@-&P,(S)) is a maximal integral manifold of &(D), it follows that 
@-#P*(S)) = S, and that Yt(S) = Q,(S). Let A be the set of all t such that 

@T(S) = YTlv,(S) f or all 7 in a neighborhood of t. Then A is obviously open, 
and we have shown that 0 E A. It follows easily from the preceding argument 
that A is closed. Therefore Dt(S) = Y,(S) for all real t, and our proof is 
complete. 

According to the above lemma, if D C V(M) and if x E M, then the mani- 
fold Qt(IO(D, GV)) depends only on t, and not on the particular choice of X. 
We shall denote this manifold by It(D, x). It is clear that I,,t(D, x) could be 
defined as the maximal integral manifold of &(I)) passing through y, where y 
is an arbitrary point of L,(D, t). 

Finally, we prove a factorization property of maps that will be utilized 
several times. 

LEMMA 3.7. Let E be a locally convex vector space, let K C E, and let C 
be a convex dense subset of K. Let F : K + I(D, x) be a continuous mapping such 
that F(C) is contained in a maximal integral manifold S of TO(D). Then F(K) 
is contained in S, and F, as a mapping from K into S, is continuous. 

Proof. If dim S = dim I(D, x), then S = I(D, x), and the conclusion 
follows trivially. Therefore, we shall assume that dim S = dim I(D, x) - 1. 

Let K E K, let X E D, and let {@,} be the one-parameter group induced by X. 
Then, as in the proof of Lemma 3.6, we can find a neighborhood Q of F(k) 
in I,,(D, F(k)), and a positive number 8, such that the mapping (s, t) + Q,(s) 
is a diffeomorphism of Sz x (-8,s) onto an open subset Q# of I(D, x). Let U 
be an open convex neighborhood of k such that F(U n K) C Q#. For each 
t E (4, S), the set Qt(Q) is an integral manifold of 9JD); therefore, if 



NONLINEAR CONTROLLABILITY 107 

Q),(Q) intersects S, then Qt(Q) is contained and open in S. Let d -= 
(t : t : < 6, Q,(Q) C S}. It follows that S n Q+ is the union of the sets 
<p*(Q), t E A. These sets are mutually disjoint and, since S is separable, it 
follows that A is at most countable. Let y - (s(y),f(y)) be the inverse in Q+ 
of the map (s, t) + Qt(s). Then the function g defined in 5 n K by g(m) =- 
f(F(nz)) is continuous. Since F( U n C) C S n sZ&, wc conclude that g(m) E -4 
for all m E C- n C. But A is at most countable, and c n C is convex; therefore 
g is constant on U n C. Since U n C is dense in L: n K, WC have that z is 
constant on E n K. Obviously g(k) = 0, and therefore g(m) = 0 for all 
m E 1,. n h’; thus F(m) E Sz. This shows that Q contains a point of S; hence 
Q C S, and I;(k) c- S. This proves the first part of the lemma. 

To prove the second part, let {k,} C K converge to K. Since f; is continuous, 
F(k,) -*F(k). For large n, s(F(k,)) is defined. Since s is continuous, s(F(K,J) 
converges to s(F(/z)) in S. But x(k,) :: 0, and therefore s(F(k,n)) 1.. E’(k,). 
Similarly, s(F(k)) =. F(k). M’b h t avc thus shown that F(k,) converges to F(k) 
in S, and our proof is complete. 

Remark 3.8. If is clear that the preceding lemma is valid under weaker 
assumptions about C and K. For instance, it is sufficient to assume that, for 
every k E K and for evcrv neighborhood C; of k, there exists a neighborhood 
V of k such that I/ C c’ and V n C is connected. 

We now state and prove the theorem towards which we have been aiming. 

‘I’HEOHEM 3.9. Let I> C V(M) be a set of complete zector fields, and let 
.Y E A’. Then, for each 1’ > 0, L,(l), ‘1’) C I,,‘(I), x) and, moreover, the interior 
0f1,,~(U, T) (relative to I,l(ll, x)) . d zs ewe in I;,(l), T) (and is? in particular, 
norwmpty). 

Proof. If dim .9;(D)(x) :. dim Y(D)(s), th en we have from CZorolla~~ 3.4 
that .&(D)(y) - Y(D)(y) for ally E f(D, x). Therefore, f&D, x) = Z(L), x) : 
I,f(I1, x) and our conclusion follows from Theorem 3.3. Assume that 
dim 9;(D)(x) .= k :- dim.Y(D)(x) - 1. It is clear from Lemma 3.6 that, 
if cy is an integral curve of D such that cx(0) = x, then cr(7’) E 107‘(L), x); hence, 
L,(T), 7’) c I”T(D, x). 

Wc now show that, if y E I,,(D, ‘f), then y is the limit of points which 
belong to the interior ofl,,(D, 7’). Let 11 = {X, ,..., X,) and let31 =- oi(T, x), 
where j T ,i = T, and Ti > 0 for i == 1, 2 ,..., m (the notations here arc the 
same as in the proof of Theorem 3.1). Let j = (j, ,...,;J be an s-tuple of 
integers between 1 and k such that the rank of t -> Qj(t, x) is equal to 
dim Y(D)(x) for all t in an open dcnsc subset Q of R”. Let Q’ = {t : t E R”, 
ti > 0 for 1. = I,... , s] n Q. Let {t,} C Q be a sequence that converges to 0, 
and let T, - (?; ,..., T “,.. 1 , ?‘,I -.-- 1, t, ii). We can assume that I, t, Ii < T,,, 
for all p >. 0. If we Ict yIa := @JT, , ai(t, , .x)), then y,, EI,,(D, ?‘). We next 
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show that yP is in the interior of L,(D, T) relative to 10’(D, x). Since the 
mapping z -+ @,(T, , z) is a diffeomorphism from lifpll(D, x) onto IoT(D, x), 
it suffices to show that Qj(t, , X) is in the interior of L,(D, Ij t, I]). Let 
VP = {t : t E R", tl > O,..., t, > 0, /I t /j = /I t, /I}. Clearly, if t E V, , 
then Qj(t, X) EL,(D, jj t, II). Let F, : V, -+ I//‘s~~(D, X) be defined by F,(t) = 
Qj(t, x). We show thatF, is analytic. Sincelj;, is analytic as a map from V, into 
I(D, x), it suffices to show that it is continuous. But this follows from the 
previous lemma, because V, is convex. The rank of t + Gi(t, x) is equal to 
dim Y(D)(x) at t = t, . Since VP is a submanifold of Rs of codimension 1, 
it follows that the rank of F, at t, is equal to the dimension of @if.ii(D, x). 
Thus, F,( V,) contains a neighborhood of F,(t,) in I$ll(D, x). It follows that 

@j(% ) X) is in the interior ofL,(D, /I t, 11). By the previous remark we conclude 
that yP is interior to L,(D, T) in IoT(D, x). There remains to be shown that yD 
converges toy in I,,lgT(D, x). The mapping (t, s) -> Qi(t, Dj(s, x)) is continuous 
as a map from Rm x R" into I(D, z). The set V = ((t, s) : ti > 0, sj > 0, 
i = l,..., m, j = I,..., s, /I t I/ + I/ s I/ = T) is convex, and is mapped into 
IoT(D, x). Therefore, the previous lemma is applicable, and we conclude 
that yv --t y in 10’(D, x). This proves our theorem. 

4. APPLICATIONS TO CONTROL SYSTEMS 

We shall consider systems of the form 

dx(t)/dt = F+(t), u(t)) 

defined on an analytic manifold M. The functions u belong to a class f& of 
“admissible controls”. We make the following assumptions about +!2 and the 
system function F: 

(i) The elements of @ are piecewise continuous functions dejned in [0, CO), 
having values in a locally path connected set Q, 9 C Rm (Q is locally path 
connected if, for every w E Q and every neighborhood V of w, there exists 
a neighborhood U of w such that U C V, and U n Q is path connectecl). In 
addition, we assume that ?2 contains all the piecewise constant functions with 
values in ~2, and that every element of % has finite one-sided limits at each point 
of discontinuity. 42 is endowed with the topology of uniform convergence on 
compact intervals. 

(ii) F : M x 8 -+ TM is jointly continuously d#erentiable. FOY each 
u E Q, F(., u) is a complete analytic vector Jield on M. We know that for each 
x E M, u E 22, the differential equation 

dx(t)/dt = J+(t), u(t)), x(0) = x, (1) 
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has a solution defined for all t E [0, a), w ere S > 0. We denote such a solution h 
by n(.v, u, .), and we assume that Il(x, u, t) is dejned for all t E [0, m). 

For the above-defined control system we now state the basic controllability 
concepts. \Ve say that y E :I4 is attainable from x’ E Al at time t (t > 0), if them 
exists u E ?l such that I;l(r, u, t) = y. For each Y E M, we let A(x, t) denote 
the set of all points attainable from x at time t. If 0 < t < OC‘, we define 
A(x, t) -- lJSGt A(x, S) and A(x) = lJt>,,A(x, t). We say that the system is 
controllable from x if A(x) .= M, and that it is controllable if it is controllable 
from every x E 121. We say that the system has the accessibility property from .I’ 
if A(M) has a noncmpty interior, and that it has the accessibility property if it 
has the accessibility property from every Y E M. Finall!-, we shall say that 
the system has the strong accessibility property from M if .J(K, t) has a non- 
empty interior for some t I=- 0, and that it has the strong accessibility property 
if it has the strong accessibility property from x for every .Y E M. 

For w E -Q, let xU, 7 F(., w); from assumption (ii) it follows that -‘i, is a 
complete analytic vector field on M. Throughout the remaining part of this 
article we let 11 = {X, : w E Q}. 

LEVIM\ 4.1. For each x E M, A(x) is contained in I(L), AX). 

‘I’he proof is identical to that of Lemma 2.4, and will therefore bc omitted. 

Remark 4.2. It is easy to see that the control sq-stem defined by restricting 
I; to I(L), X) satisfies the same assumptions as the original s\;stem. Since it 
can be readill; verified that the map u -- t n(x, u, 1) is continuous as a map 
from ti into ,2/1, it follows that this map is aLso contimmus as u map front ,ld 
info I(l), s). 

R’e now want to obtain a result for A(x, t) which is similar to that of 
Lemma 4.1. It is here that the assumption about Sz will be utilized. I,et :Y be 
the class of piccewise constant Q-valued functions defined on [0, cc). Clearly, 
B is dense in ?l. >loreover, the local conncctedness of R implies that the 
condition of Remark 3.8 is satisfied (this can bc easily verified, and we omit 
the proof). Thus, WC can apply Lemma 3.7, with (2 = -?’ and K = %, to 
obtain the following result: 

T,E>tn4.* 4.3. Let .x E M. For each t > 0, A(x, t) C 1,L(D, x). 

Proof. Since % contains d, we have that f,,(L), t) C A(x, t). Let 
G : ‘I’/ r I(D, x) be defined by G(u) : = n( X, u, 1). We have that G(B) =..-: 
L,?(D, t), and by Theorem 3.9, G(P) C I,‘(I), 2). h ‘ow our conclusion follows 
immediately from Lemma 3.7, and the proof is complete. 

The above lemmas combined with the theorems of the preceding section 
yields the following results: 
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~'HEOREM 4.4. Let x E M. Then A(x) C I(L), x). Moreover, fw every 1’ > 0, 
the interior of A(x, T) relative to I(D, x) is dense irt A(x, T) (and, in particular, 
is nonempty). 

Proof. The first part is just the statement of Lemma 4.1. To prove the 
second part, we can assume that I(D, x) = M (if not, replace the original 
system by its restriction to I(/), x), cf. Kernark 4.2). Since L,(D, T) is dense 
in A@, I’), our conclusion follows immediately from Theorem 3.1. 

?'HEOR!ZM 4.5. Let x E 144. Then, for each t > 0, A(x, t) C I,,t(D, x) and, 
moreover, the interior of A(x, t) relative to Iot(D, x) is dense ill A(x, t) (and, in 
particular, is nontmpty). 

Proof. The first part is just the statement of Lemma 4.3. To prove the 
second part, WC apply Lemma 3.7 to the function G of Lemma 4.3, and we 
get that G is continuous as a map into I,,t(D, x); therefore, &(D, t) is dense in 
A(x, t) relative to Is’(f), x). Our conclusion now follows immediately from 
Theorem 3.9, and the proof is complete. 

The following two controllability criteria follow immediately from 
Theorems 4.4 and 4.5, and from Lemma 2. I : 

COROLLARY 4.6. The system has the accessibility property from x if and only 
if dim F(D)(x) =. dim M. In this case A(x, T) has a nonempty interior for 
every T > 0. 

COROLLARY 4.7. The system has the strong accessibility property from x 
if and onZy if dim YO(D)(x) = dim M. In this case A(x, T) has a nonempty 
interior for every T > 0. 

The preceding results can be utilized to derive relationships between 
accessibility and strong accessibility. Even though the latter property stems 
much stronger than the former, we show that, for a very large class of 
manifolds (including the spheres Sn for n > I, and all compact scmisimple 
Lit groups, but not R”), it is in fact implied by it. On the other hand, for a 
still larger class of manifolds (including R”) controllability (which trivially 
implies accessibility), is sufficient to guarantee strong accessibility (the fact 
that controllability implies that dim F(D”)(x) = n + 1 for all x was proved 
by Elliott in [5]). 

Consider a system on a connected n-dimensional analytic manifold M, 
having the accessibility property but not having the strong accessibility 
property. Let D be the family of associated vector fields. By Corollary 4.6, 
dim F(D)(x) = n for all x E M. By Corollary 3.4 the number dim &JD)(x) 
is independent of x. Since this number is either n or n - 1, Corollary 4.7 
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implies that dim &(D)(x) -_ n .- 1 for all x E M. Choose a fixed X E D, 
and use Qt to denote the one-parameter group generated by X (i.e., for evcrv 
3: E 112, the integral curve of X that passes through y at t = 0 is the curve 
t -+ @&)). Define a mappingP from the manifold S x R into :M bv 

F(s, t) := @((S). 

One shows easily that F is a local diffeomorphism onto M. Morcover, 
S x R is connected. In fact, we have (see [18] for the definition of a covering 
projection): 

LEMMA 4.8. The map F is a covering projection. 

Before we prove Lemma 4.8, we show how the results mentioned above 
follow from it. 

THEOREM 4.9. Let M be a manifold &rose universal covering sppece is 
compact. Then every system having the accessibility property has the strong 
accessibility property. 

Z’roof. If the universal covering space of &’ is compact, then every 
covering space of dd is compact. If it were possible to have a system on :1/1 
having the accessibility property but not the strong accessibility property, 
we could define, for such a system, S and F as above. It would follow that 
S x R is compact, which is clearly a contradiction. 

Remark. If n > 1, the sphere S” is simply connected (and compact). 
Therefore Theorem 4.9 applies. Also, if M is a connected compact semisimple 
Lie group (for instance SO(n), if n > 2), the universal covering group of M 
is also compact [7, p. 1231 and, therefore, Theorem 4.9 applies in this case 
as well. 

‘THEOREM 4.10. Let Al be a manifold whose fundamental group has no 
elements of infinite order. Then every controllable system on .ill has the strong 
accessibility property. 

ProoJ A controllable system obviously has the accessibility property. 
Assume it does not have the strong accessibility property. Define Y and F 
as before. We show that F is one-to-one. Otherwise, there would exist su , 
s,,’ E S and a T # 0 such that F(s,,‘, T) = @r(sa’) -= F(Q) 0) = s, . Therefore 
C+(S) = S. Dcfinc N : S x R ,-+ S x R by H(s, t) -= (@r(s), t -- T). Then 
If is well defined, because @r(S) = S, and is a homeomorphism. Moreover, 
if (s, t) E S x R, 

F(H(s, t)) =-- @&D~(s)) = Qt(s) = F(s, t). 

jOj/I2/1-8 
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Therefore Ii is a covering transformation [I& Chap. 21. Moreover, if 
s is a point of S and if t belongs to R, then P(s, r) = (@,&s), t -- ml’), 
so that Hm(s, t) # (s, t) for every M. Let y be a curve in 5’ x R which 
joins (s, t) to t1(s, t). Let r denote the fundamental group of RZ (with base 
point F(s, t)). Then the composite 8 of y and F represents an element of r, 
and it is easy to see that 6 has infinite order. This is a contradiction. Thercforc 
F must be one-to-one. On the other hand, the points that are attainable from 
5’, must belong to S, (L Gt(S)) for some nonnegative t (cf. Theorem 4.5). 
Therefore, the points in S-, are not attainable, if r > 0. Thus, the system 
is not controllable, and we have reached a contradiction. 

Remark. Theorem 4.10 applies, in particular, to any simply connected 
manifold, such as R”. 

Proof of Lemma 4.8. We must show that every point of M has a neigh- 
borhood that is evenly covered by F. Let m E M. Since F is a local diffeo- 
morphism onto, them exist s E S, t E R, t > 0 and a connected neighborhood 
U of s in S such that F(s, t) = m and that the restriction ofF to C’ x (t -- E, 
2 -f- l ) is a diffeomorphism onto an open subset V of M. We claim that V is 
evenly covered. Let A = {T : D,(S) :- S}. For each 7 E A, let U, = cD~((I). 
Since @, : S -+ S is a diffeomorphism, it follows that U, is open in S and 
connected for each r E A. \Ve first show that, if 0 < 1 T -- 17 I < 2~, 7 E A, 
71 E A, then CT, and CT” are disjoint. Assume they are not. Then @r(CTr) and 
@r(En) are not disjoint, for any T. Choose T such that both 7’ -+ 7 and T f 71 
belong to (t - 6, t -I- E). Let u = @r...,(~i) = @r;.Jn,) be a common element, 
where ui and ue belong to U. Then the points (z+ , T + 7) and (Us , T I 7) 
belong to c’ x (t -- E, t $- c). Since the restriction of F to this set is one-to- 
one, it follows that T : 7, which is a contradiction. For each 7 E A, let 
w, = L:, x (t - 7 - E, t - 7 + 6). We shall conclude our proof that V 
is evenly covered by showing: 

(a) the sets IV, arc open, connected and pairwise disjoint, 

(b) for each T E A, F maps PV, diffeomorphically onto V, and 

(c) the inverse image of V under F is the union of the sets W, . 

The first two assertions of (a) are obvious. If 7 and 17 belong to A, and 
7 j. 7, then either : T -- 7 , < 2~ or 1 T -- 77 1 3 2r. In the first cast W, and 
W,, must be disjoint, because UT and U, are disjoint. In the second case, 
M/, and W, are also disjoint, because the intervals (t - 7 - 6, t - 7 $- E) 
and (t - 7 - c, t - 7 --I- 6) cannot have a point in common. 

To prove (b), take T E A. Define G : CI’ x (t - E, t -+ 6) + W, by G(u, u) =.: 
(@Ju), (J -- T). Clearly, G is a diffeomorphism from U x (t -- E, t + 6) onto 
W, . Moreover, if u E C’, t - E < 0 < t + E, then F(G(u, 0)) -= @O--7(@7(z~)) = 
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Q,(u) - F(u, u). \’ :mce the restriction of F to U x (t .- E, 1 $- c) is a diffeo- 
morphism onto V, the same must be true for the restriction of F to W, . 

Finally, we prove (c). Let u E S, o E R be such that %(u, u) E V. Then there 
exist u’ E li, U’ G (t - E, t $- E) such that F(u’, a’) : = F(u, u). Therefore 
u == D,,-Ju’). This implies, in particular, that 7 = u’ -- u belongs to Cf, 
and that n E C, . Moreover, since t .- 6 < V’ < t ; F, it follows that 
t -- 7 - E < u < t - 7 -+ E. Therefore (u, U) E W, . 

The proof of Lemma 4.8 is now complete. 

5. EXAMPLES 

EXAMPLE 5.1. Let :M = Rn, 52 :: Rm, and let I: : M x B --c TJ4 be 
defined by F(x, u) -= AX + Bu, where A and B are, respectively, n x n and 
n x m real matrices. We have that D == {A(.) + Bu : u E R”). Let bi denote 
the i-th column of B. Then, as shown by Lobry [16], ~(D)(X) contains the 
vectors 

~4x5 a,-- b. ‘-Ah. -I -An-lb. t I.‘., L. * , i := 1 ,..., m. 

It is not difficult to see that the above set of vectors forms a system of 
generators for Y(D)(x). F rom Corollary 4.6 we get that A(0, t) has a non- 
empty interior in R” if and only if {+b, , fAbi ,..., =An-‘bi , i :..= 1, 2 ,..., m> 
has rank n; equivalently, A(0, t) h as a nonempty interior in Rn if and only if 
rank[B, AR ,..., An--lB] _- n. 

Since, obviously, Ys(D)(O) =-. Y(D)(O), we conclude that A(0, t) has a 
nonempty interior whenever A(0, t) does. The above statements, along with 
the fact that JO, t) and A(0, t) are linear subspaces of R”, imply that, if 
rank[B, AB ,..., A” -lB] == n, then for each t > 0 A(0, t) :-= A(0, t) = 
A(0) = R” (Kalman [12]). Thus, in this example, the accessibility property is 
equivalent to controllability. This is, of course, not true in general. 

hUIPLE 5.2. Let &r = R”, Q .= (u E R711 : 0 .< ui < 1, i I- 1 ,..., m}, 
and letF(x, u) = (A,, + xz, Aiui)x for all (x, n) E R” x Q, where A, ,..., & 
arc n x n real matrices. Then D is the set of all vector fields X, where 
X,(x) : : (A, -; C;-, uiAi)x. The set M” of all n x n real matrices is a Lie 
algebra, with the bracket defined by [P, Q] := PQ --- QP. To each matrix P 
there corresponds a vector field V(P) defined by V(P)(x) 7 Px. It is easy to 
check that V([Q, P]) = [V(P), V(Q)]. Using this fact, the spaces Y(D)(X) 
and &(D)(X) can be readily computed: 

and 

.9-(D)(x) = {Px : P E L}, 

9p)(x) =: {Px : P EL}, 
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where L is the Lie algebra spanned by A,, ,..., A, , and I, is the ideal of L 
spanned by A, ,..., A,. We remark that for this example the theory of 
Section 4 is valid even ;f % is the set of all bounded and measurable Q-valued 
functions. This is so because the only properties of the class of admissible 
controls that were utilized in Section 4 were: (a) that the class of piecewise 
constant controls is dense in % (in the topology of uniform convergence), 
and (b) that, if (u,j are elements of % that converge uniformly to U, then 

mu, > x, t) converges to ~(zJ, x, t). 
In our example, both (a) and (b) remain valid if the topology of uniform 

convergence is replaced by that of weak convergence. This is easy to verify, 
and we shall not do it here (see K&era [14]). Moreover, the set of Q-valued 
measurable functions defined in [O, T] is weakly compact. It follows that the 
sets A(x, T), A(x, T) are compact for each T > 0. Denote their interiors 
(relative to 1(0, zv) and &r(D, x), respectively) by int A(x, T), int A($, T). 
It follows that A(x, T) is the closure of int A(x, T), and that A(x, T) is the 
closure of int A(x, T). Therefore, our results contain those of Rueera (in this 
connection, see also Sussmann [21]). 

Remark. The result of the preceding example is a particular case of a 
more general situation. Let G be a Lie group, and let M be an analytic 
manifold on which G acts analytically to the left. Then there is a homomor- 
phism h from the Lie algebra of G into V(M), defined by 

&f)(m) = (d/dt)Wp(tX) . ml, 

the derivative being evaluated at t = 0. If X,, ,..., X, belong to the Lie algebra 
of G, we can consider the control problem 

g = X,‘(x) + i U~X~‘(X), 
i=l 

where Xi’ = h(X,). Example 5.2 results by letting G = GL(n, R) and 
M = R”. 

EXAMPLE 5.3. This example shows that the analyticity assumptions are 
essential. Consider the following two systems defined in the (x, y) plane: 

and 
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Let fi :-= bA -= 1, g1 -:I 0, and g,(x, y, U) .= q(x) where v is a C” function 
which vanishes for --cc < x < I, and which is equal to I for x Y> 2. It is 
clear that for (S,) the set A((0, 0)) is the half line {(x, y) : y = = 0, x -2 0) 
while, for (S,), A((0, 0)) has a nonempty interior. How-ever, both systems are 

. identical in a neighborhood of (0,O). 
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