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1. INTRODUCTION AND ALGEBRAIC PRELIMINARIES 

THE IDEA of applying algebraic geometry to the study of control systems involving polynomial 
nonlinearities is fairly new. Some of the earliest work appeared in the 1976 paper of Sontag and 
Rouchaleau [7], on discrete time polynomial systems, and recently Sontag has reported a more 
extensive study of observability questions for this class of systems [S]. Applications to control 
systems evolving in continuous time have been studied by the present author and reported in [l]. 
The primary importance of this work is the use of the Hilbert basis theorem and elimination 
theory to significantly sharpen standard results on questions of integrability, stability, etc., for 
polynomial systems. This work is extended in the present paper, and for a wide class of systems 
we exploit the notions of finiteness in the Hilbert basis theorem to develop finitely verifiable 
conditions characterizing controllability and observability. 

In the present section we shall recall a number of basic definitions from algebraic geometry 
which will be used throughout the remainder of the paper. For additional details the reader is 
referred to any standard text such as [3] or [6]. Also, some simple ideas from differential geometry 
and Lie theory will be used in the next section. Standard texts covering this material are [5] and 

[la 
We let k = @ or IR. For each positive integer p and n-tuple x of elements in k, let xtpl denote the 

(“‘“p-l)_ tuple of weighted p-forms in the components of x (i.e., &‘I = ‘(xy, c(~x~-~x~, 

p-1 
$X2 xg, . . ., xf)-ij, where the entries are ordered lexicographically, and the weights are chosen 
so that IIxtplI\ = IIxIIp. H ence a typical entry is of the form c1x;‘xp22.. . x5” where cpi = p and 
CI = Jp!/(pr!... p, !). We define x to1 to be the scalar 1 for all n-tuples x. 

Throughout this paper we shall think of elements of k” as column vectors. k[s,, . . . , SJ is the 
ring of polynomials in the indeterminates sl, . . . , sn; this notation will frequently be abbreviated 
k[s]. An algebraic set in k” is the set of zeros for some subset of polynomials in k[s]. Thus if 
22 E k[s], we have an associated algebraic set V(9) = {x E k”:f(x) = 0 for all f~ 2?}. Let V2 
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.i- For any matrix A, ‘A denotes the transpose of A. 

543 



544 J. BAILLIEUL 

denote the smallest ideal in k[s] which contains 2 Then V(9) = V(-Y,). Dually, if S c k”, define 
the ideal l”(S) = (f~ k[s]:f(x) = 0 for all x E S}. Then S E V(V(S)). If V’^ is any ideal in k[s] 
we have V c VP(V(Y)). V( V(V)) is called the radical of V and it is the largest ideal defining 
V(V) in the sense that it contains as a subset any other defining ideal. 

IffE k[s], x E k” we define the differential off at x to be the linear function d,f‘: k” + k given by 

d,f(v) = f: (2j/2si)(x)ci. If f~ k[s] and F( ) s is a column vector whose entries are elements of 
i=l 

k[s], we define the Lie derivative off with respect to F by LFf(s) = d,f(F(s)) = C(8f/hi)(s)Fi(s). 
Next, given a set ?2 E k[s] and a set Y whose elements are column vectors of polynomials, let 
1(_22; Y) denote the smallest polynomial ideal in k[s] which contains 2? and is closed under Lie 
differentiation with respect to elements of Y. 

Let T/be an algebraic set defined by the equations f,(x) = . . = f,(x) = 0. The tangent space to 
I/ at x, denoted T,x is the vector space of all 1: E k” such that d,&(u) = 0 for i = 1,. . . ,r. An 
algebraic set V is said to be irreducible if there do not exist algebraic sets V, and V, such that 
I/= Vi u V, with V’ # l$ Irreducible algebraic sets are also called algebraic varieties. Any alge- 

braic set is the union of finitely many algebraic varieties. If I/ is an algebraic variety and x E I/ 
is such that dim T,V = min dim T,I! x is called a simple point. All other points in the variety I/ 
are called singular points. 

The geometric dimension of an algebraic variety is the dimension of the tangent space at any 
simple point. It is usual to define the algebraic dimension of an algebraic variety as the trans- 
cendence degree of the field of fractions of the coordinate ring. The algebraic dimension will 
coincide with the geometric dimension when k = @ but if k = R the algebraic dimension only 
provides an upper bound on the geometric dimension. The dimension of a (reducible) algebraic 
set is the maximum of the dimensions of its irreducible components. 

Let 1/ c k” and W c k”’ be arbitrary varieties. An algebraic mappingf’: V -+ W is a mapping 

of the form f(x,, . . . , x,J = (f,(x), . . . ,f,(x)) where fi E k[ ] s an d such that whenever g E V^( W) 
it follows that g of E V(V). If f: I/ + W is an algebraic mapping it is immediate from the delini- 
tion that for each y E W the fiber f - ‘(y) is a closed algebraic subset of I/: As y ranges over W; the 
dimension of the algebraic sets .f - ‘(y) remains constant on a non-empty open subset of lit! In 
general, however, there will be points in W where the dimension jumps. For certain algebraic 
mappings of k” into k”’ the following theorem gives a bound on the dimension of the fibers. This 
result will be useful in Section 3 in connection with observability. 

THEOREM 1.1. Let f = (f,, . . . ,f,): k --f k” be a mapping such that each h is a homogeneous 
polynomial with deg A 3 1. For each y E k”, f-‘(y) is an algebraic set in k” and dimf -i(y) d 
dimf - ‘(0). (Here “dimension” means “algebraic dimension”.) 

The proof of this theorem is somewhat involved and is omitted. It may be found in [l]. 

2. CONTROLLABILITY 

We wish to study systems of nonlinear controlled differential equations of the form 

i(r) = .0x(t)) + u(r)&(r)) (1) 

where f and g are vector fields with polynomial dependence on their arguments. It is usual to 
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regard x(t) as belonging to R” for each t 3 0, but we shall find it useful to assume more generally 
that x(t) E k” where k = R or @. u(.) is a k-valued piecewise-C” function. We are thus restricting 
our attention to scalar controls. This is done only to simplify the exposition, and the extension 
of all our results to the case of vector controls is straightforward. 

Definition 2.1. (i) Given x E k”, the set of all y E k” such that there is a t > 0, a piecewise-C” control 
u( .) and a trajectory x( .) defined by (1) with x(0) = x and x(t) = y is called the reachable set from 
x at time t. Denote this set by &‘(x, t). 

(ii) The set d(x) = U &(x, t) is called the reachable set from x. 
130 

THEOREM 2.1. Let V be an algebraic set in k”. If &(x0) c V for each x0 E V then Z(V”(V); if; g}) = 
V(V). If for any ideal V defining V Z(-Y-, if; g}) = V’^ then &(x0) E I/ for each x0 E P! 

This theorem is proved in [l]. It is pointed out that the statement “r;9(x,) E I/for each x0 E I/” 
does not imply “Z(V; {f, g}) = V’ for an arbitrary V” defining V Let ^Y- be the ideal in k[s,, s,] 
generated by the polynomials 4,(s,, s2) = s: and 4Js1, sJ = s2 and let f(s,, s2) = (,“,), g(sl, SJ = 
(i). V(V) = {(“,)} and it is trivial that &(x0) E I/ for each x0 E V. Nevertheless, a simple calcula- 
tion shows that I(V; {f, g}) = U-(V) and V”(V) properly contains V^. 

Definition 2.2. The system (1) is said to have the strong accessibility property on k” if for all x E k” 
and all t > 0, &‘(x, t) has non-empty interior (in the standard k” topology). 

Example 2.1. Consider the linear system 

i(t) = Ax(t) + bu(t). 

It is well known that if rank (b, Ab, . . . , A”- ‘b) = n, then for all x E k” and t > 0, &(x, t) = k”. 
On the other hand, if rank (b, Ab,, . . ,A”-‘b) <n there is a UE~” such that ‘v.Ak.b = 0 for 
k = 0, 1,. . . , n - 1. Let V = I({%. s}, {As}), and let I/ = V(V). It is easy to see that V(V) is 
closed under Lie differentiation with respect to As and b, so that by Theorem 2.1 the motion 
of the system can be confined to a proper (linear) subvariety of k”. Thus, for linear systems the 
notion of strong accessibility is the same as the usual notion of controllability. 

Exumple 2.2. Consider the system 

(::i3 = (“:i;t)x2(t)) + (z(q) 
in R2. We shall subsequently see that this system has the strong accessibility property on R2. 
For any initial point x E R2, however, the reachable set d(x) is not all of R2. Indeed, it is im- 
mediate that d(x) lies in the half-plane x1 3 x,(O). 

We shall now present a criterion for a system of the form 

i(t) = Ax(t)‘P1 + bu(t) (2) 

to have the strong accessibility property. This criterion will be analogous to the usual rank 
condition for linear systems (Example 2.1). If we write f(x) = Ax ‘p1, then the pth differential dPf 
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defines a symmetric p-linear mapping k” x k” x . . . x k” + k”. We wish to consider a set B of 
vectors defined recursively in terms of A and b as follows: b E B and whenever ul,. . , up E B 
it follows that dPf(v,, . . . , u,) E B. Also, define the order or element of B recursively by saying the 
order of b is 1 and the order of dP’(u,, . . . , up) is the sum of the orders of ui, . . . , up plus 1. The 
connection with controllability is given by the following. 

THEOREM 2.2. The system (2) has the strong accessibility property on k” if and only if the elements 
ofBoforder 61 + p + . . . + p”-’ spank”. 

The proof of this theorem will be by means of two lemmas. 

LEMMA 2.1. The system (2) has the strong accessibility property on k” if and only if B spans k”. 

Pro05 First, suppose B spans k”. Let g denote the Lie algebra of vector fields generated by 
,4xJp1 and b; i.e., g is the smallest Lie algebra of analytic vector fields defined on k” which contains 
both Axtpl and b. Let 9, denote the ideal (in the sense of Lie theory) in g generated by the vector 
field b. Finally, for each x E k” let .4p,(x) denote the set of vector fields in Y, evaluated at x. 
From the work of Sussman and Jurdjevic [9], we know that if dim Y,(x) = n for each x E k”, 
then (2) has the strong accessibility property on k”. Therefore, since B E Y&x) and we assumed B 
spans k” it follows that the system (2) has the strong accessibility property on k”. 

Suppose, on the other hand, that B spans only a subspace of k”. Then there is some nonzero 
vector u E k” such that ‘u. w = 0 for all w E B. Let 9 consist of the single homogeneous poly- 
nomial ‘u . s = ulsl + u2s2 + . . . + u,s,, and let V = Z(3!; {AsJpl, b}). Since V = I(“/‘“; {AsJpl, b}) 
it follows from Theorem 2.1 that for each x0 E V(V), &(x0) c V(V). Since V contains homo- 

geneous polynomials of degree 3 1, V(V) is a proper closed algebraic subset of k”. This implies 
for x0 E l/(V) &(x0) has empty interior in the topology of k”. Thus (2) does not have the strong 
accessibility property on k”. 

LEMMA 2.2. Each element in the set B is a linear combination of elements whose orders do not 

exceed1 + p + . . . + p”-‘. 

Proof We shall show that any element in B of order greater than 1 + p + . . . + p”-’ can be 
written as a linear combination of elements of strictly lower order. By applying this argument 
sufficiently many times we obtain the conclusion of the lemma. 

Call an element of B primitiue if it cannot be expressed as a linear combination of elements of 
strictly lower order. Suppose u E B is a primitive element of order greater than 1 + p + . . + p”- ‘. 
Then we may write u = dPf(u:, uf, . . . , II:) where each u; is primitive. (If some u: were not primi- 
tive, u itself could not be primitive.) Also, at least one of the vi’, say u:, is of order greater than 
1 + p + . . . + p”-2. Now we may write u ; = dPf(uf,. . . , II;) w h ere each u: is primitive and at 

least one of the uf, say uf, is of order greater than 1 + p + . . . + pnm3. Continuing in this way, we 
produce a string of elements u, u:, UT, . . . , u ;- ’ in B which are all primitive and such that the order 

of 1;: is greater than 1 + . . + P’-~-‘. Let t$’ = u and u; = b. Then either u:, G:, . , L;: is a 

set of IZ + 1 linearly independent elements in R” or else there is a nontrivial linear combination 

i u,vf = 0. Th e f ormer conclusion is obviously impossible while the latter violates the condition 
i=O 
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that each of (0 6 i 6 n) is primitive. This forces us to abandon our assumption that there exists 
a primitive element of order greater than 1 + . . . + p”-l, and this proves Lemma 2.2. 

Proof of Theorem 2.2. From Lemma 2.2 B spans k” if and only if the elements in B of order 
<l+p+...+p”_’ span k”. Theorem 2.2 is therefore a direct consequence of Lemma 2.1. 

3. OBSERVABILITY 

In this section we wish to study systems with output: 

a(t) = Ax(t)[P’ + L&)Bx(t)[q’ 7 (3) 

y(t) = Cx(t)[‘l, (4) 

where x(t) E k”, y(t) E k and A, B and C are matrices of the appropriate dimensions with entries in 
k. Assume p, r 2 1 and q 2 0. Also assume that the vector field AxLP1 is complete in the usual sense 
that corresponding integral curves are defined for all times t E (- co, co). In (3) and (4) we are 
restricting our attention to scalar output as well as scalar input. Again, we remark that the exten- 
sion to the case of vector inputs and outputs makes the notation cumbersome, but it presents no 
essential difficulty. 

Some additional notation is unavoidable at this point. For any piecewise-C” control u( .) let 
y:(x) denote the flow determined by the differential equation (3). For simplicity, let f(x) = 
Axi”‘, y(x) = Bx’q’ and h(x) = Cx”]. For each x E k” let F(x) denote the set of all y E k” such that 
for each 6 > 0, h(yy(x)) = h(($(y)) on [0, S] where yf(.) is the flow generated by the input u = 0. 
In other words, F(x) is the set of all initial states for the system (3) which cannot be distinguished 
from the initial state x using the zero input and observing the output y(t) on any interval [0,6]. 
It is easy to see that the relation of state x being indistinguishable from state y in this sense is an 
equivalence relation. 

Next define the set of polynomials 9 = {L:h: k = 0, 1, . . .}. This is related to F by the follow- 
ing. 

THEOREM 3.1. F(x) = F(y) if and only if 4(x) = 4(y) for all 4 E 9. 

Proof: Suppose F(x) = F(y) (’ . 1.e , x E F(y) or equivalently y E F(x)). Then h($(x)) = h($(y)) 
on [0,6] for every 6 > 0. Differentiating both sides k times yields L:h(yf(x)) = L;h(yp(y)). Hence 
L:h(x) = L:h(y) for k = 0, 1,. . . and we have proved the “only if’ portion of the theorem. 

Suppose, on the other hand, that 4(x) = 4(y) for all 4 E F. Let 6 > 0 be given. We wish to show 

that h@(x)) = h(y%)) f or each t E [0,6]. We know that h(yf(x)) and h($(y)) are analytic functions 
oft. Expanding these about t = 0 we obtain 

h(y;(y)) = h(y) + L,h(y)t + +l;h(y)t2 + . . . 

and 

h($(x)) = h(x) + L,h(x)t + #h(x)t2 + . . . . 

Since by hypothesis the Taylor coefficients are equal, h($(x)) = h(yp(y)) on their common 
interval of convergence, say (-a,, 6,). A straightforward analytic continuation argument shows 
that indeed h(yp(x)) = h(yP(y)) for all t E [0,6]. This proves the theorem. 
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By observing the output y(t) corresponding to a certain nonzero input u(t) it may be possible 
to distinguish two initial states x and y even though F(x) = F(y). It is useful to define G(x) to be 
the set of all y E k” such that for each 6 > 0, h(y:(x)) E h(y:(y)) on [0,6] for every choice of piece- 
wise-Cm control u. In other words, G(x) is the set of all initial states for the system (3) which for 
any piecewise-C” input u are indistinguishable (by observations of the output y). Again one notes 
that indistinguishability in this sense is an equivalence relation. The equivalence classes of the 
“F” relation form a coarser partition of k” in the sense that for each x E k”, G(x) E F(x). In general 
this containment is strict, but for the special case of linear systems (where p = Y = 1, 9 = 0) the 
reverse inclusion also holds. 

Define the following sets of polynomials. Y, = {h}, 9?k = { Lf+, L& : 4 E gk _ ,I. Let 9 = u gk. 
The following theorem is proved by Hermann and Krener [4]. k 3 0 

THEOREM 3.2. If G(x) = G(y) then 4(x) = 4(x) for all 4 E 9’ 

Example 3.1. Consider the system in R2 

y(t) = x,w 
Under the zero input the motion of the system for any nonzero initial state is confined to a circle 
centred at the origin. We can list the first few elements of F. h(s,, sJ = s:, L#s,, s2) = 2s,s,, 
+r(s,,s,) = 2s; - 2s:, L;h(s,,s,) = -8s,s,. Apparently F consists of various multiples of 
sf, sisi and si - s:. It follows from Theorem 3.1 that F(x) = {x, -x} for each x E R2. On the 
other hand, L,h(s,, sJ = 2s, and L&,h(s,, s2) = 2s, are elements Jf 9. Hence G(x) = (x} for 
all x E FP. This provides an example ofa simple nonlinear system for which the output distinguishes 
among all initial states, but for which output from the free motion alone (i.e., zero input) fails to 
distinguish certain states. 

The sets F(0) and G(0) are of special practical importance since it is often important in applica- 
tions to know whether the system is at rest or not. The remaining results of this section show that 

these sets are also of special theoretical interest. Let gli = fi (4 t. cgj: deg d, 3 1; and let 
j=O 

@ = U Gk. Band 3 determine algebraic sets, the importance of which is shown by the following. 
k30 

THEOREM 3.3. (i) F(0) = V(9). (ii) G(0) z V(g). 

Proof. Let x E F(0); then by Theorem 3.1 4(x) = $(O) = 0 for all 4 E F. Hence x E V(F). 
On the other hand if x E V(F), then 4(x) = 0 for all 4 E F. Hence 4(x) = 4(O) for all 4 E F and 
it follows from Theorem 3.1 that x E F(0). This proves (i), (ii) is proved similarly using Theorem 3.2. 

9 and 3 determine ideals Y‘,F and 9’,$ in k[s]. Moreover, it is a direct consequence of the 

Hilbert basis theorem that for some positive integers k,, k, we may take Pk, = (11, L,h, . , L;‘h} 
as a basis for “VF and $(k, (defined above) as a basis for V$ . Hence V(9) = V(V‘,F) = V(Fkl) 
and V(g) = V(V8) = V($J. The main problem is to decide when F(O) = (0) (resp. G(0) = (0)). 
In light of Theorem 3.3 this will be the case if V(F) = (0) (resp. V(9) = (0)). We may find V(F) 
and V(@) explicitly by solving the systems of simultaneous homogeneous algebraic equations 
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4(x) = 0 for 4 E %*lk, and $(x) = 0 for $ E gk2, respectively. These calculations can be carried out 
using the iechniques of elimination theory as outlined in [lo] and [l 11. In particular V(%) = (0) 
(resp. V(9) = 0) if and only if the inertia forms for the corresponding systems of algebraic equa- 
tions do not vanish. (The inertia forms for a system of simultaneous homogeneous algebraic 
equations are defined in Sections 80 and 81 or [lo]. These represent a generalization of the 
determinant for a system of n linear equations in n unknowns. They are homogeneous poly- 
nomials in the coefficients of the equations, and they all vanish if and only if the system has a 
nontrivial solution.) 

The non-vanishing of the inertia forms is a finitely verifiable sufficient condition for F(0) = (0) 
and G(0) = {O} respectively. We shall now see that this same condition is sufficient for the sets 
F(x) and G(x) to have finite cardinalities for each x E k”. 

Let x E k” be arbitrary but fixed and for each 4 E % let a+, x E k be defined by a+, x = 4(x). For 
each II/ E 2? let b $, x E k be defined by b,,? = 9(x). By Theorem 3.1, F(x) = {y E k”: 4(y) - a#,, = 0 
for all 4 E %}, and this is a subset of F(x) = {y E k”: 4(y) - u+,~ = 0 for all 4 E %&,I. Similarly, 
G(x) is a subset of C(x) = (y E k”: $(y) - be,., = 0 for $ E gk2}. For each x E k”, F(x) and C(x) 
are fibers of homogeneous polynomial mappings. Theorem 1.1 applies to show that dim F(x) d 
dim F(O) and dim G(x) < dim C(0). 

THEOREM 3.4. If the inertia forms for the system of simultaneous homogeneous algebraic equations 
4(x) = 0 for 4 E %-,, (resp. t&x) = 0 for tj E gk2) do not vanish, or equivalently, if the only solution 
to the system 4(x) = 0 for 4 E %,, (resp. Ii/(x) = 0 for I,+ E dk2) is x = 0, then F(x) (resp. G(x)) is a 
finite set for each x E k”, and F(0) = (0) (resp. G(0) = (0)). 

Proofi Suppose the only solution to the system 4(x) = 0 for 4 E %k, is x = 0. This implies 
F(0) = (0) ( an d f t a or iori F(0) = (0)). Thus dim F(O) = 0 and as noted above dim F(x) must also 
be zero for each x E k”. But the dimension of an algebraic set is zero if and only if that set is finite. 
Since F(x) c F(x), F(x) must also be finite, proving the theorem for F. The same argument is 
valid with F, F and %,, replaced by G, (7 and $lk2. 

COROLLARY 3.1. The inertia forms for the system of simultaneous homogeneous algebraic equa- 
tions 4(x) = 0 for 4 E %-k, do not vanish if and only if F(x) is a finite set for each x E k” with 
F(0) = (0). 

Proof The “only if’ portion is the statement of Theorem 3.4. Suppose F(x) is finite for each 
x E k” with F(0) = (0). F rom Theorem 3.3 and the detinitiorl of ak, we see that V(%J = {0}, 
which means the only solution to the system of simultaneous homogeneous algebraic equations 
4(x) = 0 for $J E %,, is x = 0. From the results in Section 80 in [lo] this implies the inertia forms 
are zero. 

Remark. An open question is whether G(0) = (0) implies the vanishing of the inertia forms for the 
system I&X) = 0 for II/ E gzk,. 

Example 3.2. Consider the linear system 

i = Ax + bu, 

y = cx. 
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Here 9 = ‘S? = {cs, cAs, . . . , cAks , . . .}. We know V,F is generated by {cs, cAs, . . . , CA”- ‘s} (the 
Cayley-Hamilton theorem!). There is one inertia form for the system cAkx = 0, k = 0, 1, . . . , n - 1; 
it is the determinant of the matrix 

Theorem 3.4 thus implies that F(x) and G(x) are finite sets for each x if this determinant is non- 
zero-a result consistent with our knowledge of finite dimensional linear systems theory. In the 
next section we apply our results to a more interesting (nonlinear) example. 

4. A PROBLEM IN RIGID BODY CONTROL 

The following system describes the rotation of a rigid body steered by a pair of opposing gas 
jets and whose rotation about one fixed axis can be observed. 

(5) 

y(t) = ClXlW + c2xJt) + c,x,(tL (6) 
Q1 + a2 + cl3 + a,a,a, = 0, 

c; + c; + c; = 1, 

If the principal moments of inertia are I,, I, and I, then a, = (I, - ZJZ,, a2 = (I, - 1,)/Z,, 
a 3 = (I, - ZJZ,. xi(t) is the angular velocity about the ith principal axis of inertia and y(t) is the 
component of angular velocity about the axis (c,, c2, c 3 ) (written with respect to the principal 
axis coordinate system). Z,bp(t) represents the torque applied about the ith axis by the gas jet. 
It is known that the set of initial conditions for (5) which give rise to periodic motions comprise a 
Zariski open subset of R3 (see, for example, [l]). It follows from an argument very similar to the 
one used for the proof of Theorem 4 in [2] that if (5) has the strong accessibility property on R3, 
then the set of points attainable in finite time (from any initial point) is all of R3. 

To determine conditions under which this system has the strong accessibility property, accord- 
ing to theorem 2.2, we must calculate the linear span of b, d’f(b, b), d2f(b, d2f(b, b)) and d2f(d2f(b, b), 
d’f(b, b)) where 
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The first three span R3 if and only if the determinant 

b, a,b,b, a,b,(a,b: + a$:) 

b, a,b,b, a,b,(u,bf + a,b;) = (a,b; - a,b:)(a,b; - u,b:k,b: - a&;) 

b, a,b,b, u,b,(a,b: + u,b;) 

is non-zero. The fourth vector in the above list is 

b1 

d’f(d2f(b, b), d2f(b, b)) = 2 b2 

i1 03 

where I = 4u,u,u,b,b,b,. It is now not difficult to see these four vectors span R3 precisely when 
we don’t have u,bj2 = ujb,? for some i # j. We summarize these observations as follows. 

THEOREM 4.1. The system (5) has the strong accessibility property on R3 if and only if we don’t 
have u,bf = u,bf for some i # j. 

COROLLARY 4.1. For the system (5) the set of points attainable from x is R3 for all x E R3 if and 
only if we don’t have u,b: = ajbF for some i # j. 

To assess the observability of this system we first compute 8. 

h(s) = cisi + czsz + c3s3, L/l(s) = ClUlS2S3 + C2U2SIS3 + c3u3s1s2 

and 

L;h(s) = c1ulu3sIs~ + c2u2a3szs2 + clalu2sIs~ + c3u2u3s~s3 + c2ulu2s& + c3ulu3s~s3. 

A straightforward calculation shows that these three pc$ynomials form a basis for the ideal Vs. 
To employ Theorem 3.4 we therefore compute the inertia forms of the system of equations 
h(x) = 0, L/r(x) = 0 and L;h(x) = 0. One inertia form suffices for this system, and a somewhat 
tedious calculation using elimination theory shows it may be taken to be 

&J(a,, a21 U3, Cl, Cp C3) = [(U& - U,Cf)” + (U,C: - U34)” 

+(u,c; - u,cy - u;‘c; - a;c”, - u;c; 

+4u,u,u,c;c;c;(u,c; + U2C; + U3C;)]UlU2U3C1C2C3. 

THEOREM 4.2. Suppose the output (6) of the free motion (u(t) = 0) of (5) is observed on some inter- 
val [0,6]. The condition alu2u3c1c2c3 # 0 is necessary and sufficient for all initial states to be 
distinguishable from the zero initial state and also for all but finitely many initial states to be 
distinguishable from any initial state x,, E R3. 
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Proof: In light of Corollary 3.1 we need to show 4(a,,a,, u3,c1, c2, cJ # 0 if and only if 
a,a,a,c,c,c, # 0. If u,u2u3c1c2c3 # 0 then q!i( a,, u2, u3, cl, c2, CJ can be zero only if 

(V: - u&)4 + (u,cf - u,c$” + (u2c; - Q,C$” 

4 8 
--alCl 

4 8 
- u2c2 - u;c; + 4u,u2u3c;c;c~ = 0. 

Since a, + u2 + u3 + ulu2u3 = 0, two of the q’s must be of one sign while the remaining a, 
has the opposite sign. Let x1 = a,~:, tx2 = a,& c(~ = u3c: and assume, with no loss of generality, 
that a, and t12 have the same sign with a3 having the opposite sign. Rewrite the polynomial as 

(a, - c(J4 + (X, - ZJ4 + (CQ - NJ4 - U.;’ - a; - a: + 4cc,cc&a, + U2 + X3) 

which may be rewritten as 

(tll - IXJ~ + u’: + 6(c(; + E;)z: - 4(r, - u$(x~ - sr,)cr, + 4(a,a, - (CX, + c+&~. 

Since c(~ and c(~ have the same sign and c(~ has the opposite sign the fourth term is nonnegative, 
while the last term is positive. The first three terms are nonnegative, so that the whole expression 
is positive. This implies that q5(u,, u2, u3, c,, c2, CJ # 0 and the conclusion of the theorem follows 
from Theorem 3.4. 

A similar analysis for the case of nonzero inputs is clearly possible, but we omit the details. 
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