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Abstract— In this paper, we study the control of an en-
semble of time-invariant bilinear systems defined on the spe-
cial orthogonal group SO(n). This type of ensemble control
systems appears in various application domains, such as the
manipulation of quantum spin ensembles and motion planning
for a population of robots. We establish an explicit algebraic
necessary and sufficient condition to examine the controllability
of systems on SO(n) by using the terminology from the theory
of symmetric groups, which provides a transparent means to
analyze the underlying Lie algebras. In addition, we show the
equivalence between controllability and ensemble controllability
of individual and ensemble systems, respectively, for systems
evolving on SO(n).

I. INTRODUCTION

Problems involving the control of an ensemble of struc-

turally identical systems defined on Lie groups have been the

subject of numerous recent investigations. Primary interests

arise from multidisciplinary domains, such as exciting an en-

semble of quantum systems for applications of spectroscopy,

imaging, and computation [1, 2, 3] and coordinating the

movement of flocks or a population of robots in biology and

robotics [4, 5]. Although these problems are well motivated

and highly deserved to study, there existed little progress in

theoretical developments towards a complete understanding

of fundamental properties of ensemble control systems on

Lie groups, and most state-of-the-art results were centered

around the ensemble systems defined on SO(3) [6, 7, 8].

In this paper, we characterize the controllability of en-

semble systems defined on the general special orthogonal

group SO(n). In particular, we develop an effective alge-

braic approach for examining controllability by mapping

the Lie algebra operations to the permutation operations

in symmetric groups. Moreover, we analyze controllability

through the procedure of covering the Lie algebra so(n) by

its sub-algebras that are isomorphic to so(3). In this way,

the ensemble controllability analysis can be systematically

reduced to that of SO(3), which was established in our

previous work [6].

In the following section, we will review the notion of

ensemble controllability and summarize the previous work

on ensemble control of systems on the Lie group SO(3). We

will then extend these previous results to the case in which

the ensemble system on SO(3) consists of a general structure

of parameter variations. This facilitates our controllability
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analysis for ensemble systems on SO(n). In Section III, we

use the terminology of symmetric groups to construct an

algebraic necessary and sufficient controllability condition

for a single as well as an ensemble of systems on SO(n).

We then reveal the equivalence of controllability and ensem-

ble controllability, respectively, for individual and ensemble

systems on SO(n). Examples are provided to illustrate the

advantage and effectiveness of our approach.

II. ENSEMBLE CONTROL ON SO(3)

In this section, we define the notion of ensemble con-

trollability and review the previous results on controllability

of an ensemble systems defined on the special orthogonal

group SO(3) [6], which lay the foundation for analyzing

controllability for the ensemble systems on SO(n).

A. Control of Ensemble Systems

Consider a parameterized family of control systems

d

dt
x(t, ε) = f(t, x(t, ε), u(t)) (1)

defined on a state space M and indexed by the parameter

ε taking values on some compact set K ⊂ R
d. The same

control u(t) ∈ R
m is being used to simultaneously steer this

family of control systems. For such systems, we define the

notion of ensemble controllability as follows.

Definition 1. Let F(K) denote the space of M -valued

functions defined on K . The family of systems in (1) is said

to be ensemble controllable on the function space F(K), if

for any δ > 0 and starting with any initial state x0 ∈ F(K),
where x0(ε) = x(0, ε), there exists a control law u(t)
that steers the system into a δ-neighborhood of a desired

target state xF ∈ F(K) at a finite time T > 0, i.e.,

‖x(T, ε) − xF (ε)‖ < δ, where ‖ · ‖ is a norm on F(K).
Note the final time T may depend on δ.

In this work, specifically, we study time-invariant driftless

ensemble systems defined on a Lie group G of the form

d

dt
X(t, ε) =

[

m
∑

i=1

εiui(t)Bi

]

X(t, ε), X(0, ε) = I (2)

where ε = (ε1, . . . , εm)′ ∈ K , a compact subset of R
m,

the state X(t, ·) ∈ C(K,G), the space of continuous G-

valued functions under the supreme norm, for each t ≥ 0,

and B1, . . . , Bm are linearly independent elements in the Lie

algebra g of G, I is the identity matrix, and ui(t) ∈ R, i =
1, . . . ,m are piecewise continuous control functions.
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B. Controllability of Ensemble Systems on SO(3)

Manipulating an ensemble system evolving on SO(3) is

an important problem in the area of quantum control, which

models practical control design problems in nuclear magnetic

resonance (NMR) spectroscopy and imaging (MRI), quantum

computation, and quantum information processing [1, 3]. In

this case, we consider G = SO(3) with K = [a, b] ⊂ R
+,

and the ensemble system is expressed in the form as in (2),

given by

d

dt
X(t, ε) = ε

[

uΩy + vΩx

]

X(t, ε), X(0, ε) = I (3)

where

Ωy =





0 0 1
0 0 0
−1 0 0



 , Ωx =





0 0 0
0 0 −1
0 1 0



 .

We know that C(K, SO(3)) itself is an infinite-dimensional

Lie group with the Lie algebra C(K, so(3)), where so(3)
is the Lie algebra of SO(3). Let fn(ε) = (ε/b)n, then

the sequence fn(ε)Ωx in C(K, so(3)) has no convergent

subsequence, and thus C(K, SO(3)) is not compact, which

makes the study of ensemble controllability challenging.

Because so(3) is a 3-dimensional vector space over R,

C(K, so(3)) can be seen as a 3-dimensional vector space

over C(K,R). Adopting this idea, we can analyze ensemble

controllability of the system (3).

Lemma 1. The system (3) is ensemble controllable on

C(K, SO(3)) [6].

Proof. Observe that the Lie brackets generated by the set of

matrices {εΩy, εΩx} are

ad2k+1
εΩy

(εΩx) = (−1)kε2kΩz ,

ad2kεΩy
(εΩx) = (−1)kε2k+1Ωx,

where k ∈ N and adAB = [A,B] for all A,B ∈ so(3). Now

using {εΩx, ε
3Ωx, . . . , ε

2n+1Ωx} as generators, we are able

to produce an evolution of the form

Rx(ε) = exp(c0εΩx) exp(c1ε
3Ωx) · · · exp(cnε

2n+1Ωx)

= exp

{

n
∑

k=0

ckε
2k+1Ωx

}

. (4)

As a result, given any ε-dependent rotation around x-axis,

i.e., exp{θ(ε)Ωx} where θ(ε) ∈ C(K), the order of the

polynomial n and the coefficients ck can be appropriately

chosen so that
∑n

k=0 ckε
2k+1 ≈ θx(ε) for all ε ∈ K , i.e,

‖
∑n

k=0 ckε
2k+1 − θx(ε)‖∞ < δ. Similar arguments can be

developed to show that we can approximately generate any

ε-dependent rotation around y-axis, i.e., exp{θy(ε)Ωy}, and

hence produce any three-dimensional rotation. Namely, given

any rotation Θ(ε) ∈ C(K, so(3)), we can parameterize it by

the Euler angles (α, β, γ) such that

Θ(ε) = exp{α(ε)Ωx} exp{β(ε)Ωy} exp{γ(ε)Ωx},

and then the desired rotations characterized by the continuous

functions α, β, γ ∈ C(K) can be synthesized by using the

control vector fields as described in (4). This concludes that

the system in (3) is ensemble controllable (or approximately

controllable) with respect to the topology of uniform conver-

gence.

It was also shown in our previous work that the ensemble

with a dispersion in the drift, i.e., the system

d

dt
X(t, ε, ω) =

[

ωΩz + εuΩy + εvΩz

]

X(t, ε, ω), (5)

where ω ∈ K ′ ⊂ R with K ′ compact and

Ωz =





0 −1 0
1 0 0
0 0 0



 ,

is ensemble controllable on C(K × K ′, SO(3)) [6]. Next,

we extend these previous results to investigate the ensemble

system on SO(3) with three parameter variations.

Proposition 1. Let K be a compact subset of (R+)3, then

the ensemble systems

d

dt
X(t, ε) =

[

ε1u1Ωx + ε2u2Ωy + ε3u3Ωz

]

X(t, ε) (6)

is ensemble controllable on C(K, SO(3)), where ε =
(ε1, ε2, ε3)

′ ∈ K and ui : [0, T ] → R, i = 1, 2, 3, are

piecewise continuous.

Proof. By successive Lie bracketing of the set of elements

{ε2Ωy, ε3Ωz}, we obtain

ad2k+1
ε2Ωy

(ε3Ωz) = (−1)kε2k+1
2 ε3Ωx,

ad2l+1
ε3Ωz

(ε2k+1
2 ε3Ωx) = (−1)lε2k+1

2 ε2l+1
3 Ωx,

where k, l = 0, 1, 2, . . . . Defining L(k,l) = ε2k+1
2 ε2l+1

3 and

applying the iterated Lie brackets for L(k,l)Ωx yields

ad2s[ε1Ωx,ε2Ωy ](L(k,l)Ωx) = (−1)sε2s1 ε
2(k+s)+1
2 ε2l+1

3 Ωx

= (−1)sε2s1 ε
2(k+s)
2 ε2l3 (ε2ε3Ωx),

where s = 0, 1, 2, . . . . Furthermore, let L(s,k,l)(ε) =

ε2s1 ε
2(k+s)
2 ε2l3 and A = span{L(s,k,l) : s, k, l = 0, 1, . . .} ⊂

C(K,R), then for any functions f, g ∈ A, their product

fg also belongs to A, so A is a subalgebra of C(K,R).
Pick any two points x = (x1, x2, x3)

′ and y = (y1, y2, y3)
′

in K and assume that f(x) = f(y) for all f ∈ A, in

particular, taking L(1,0,0)(x) = L(1,0,0)(y), L(0,1,0)(x) =
L(0,1,0)(y) and L(0,0,1)(x) = L(0,0,1)(y), then we obtain

xi = yi for each i = 1, 2, 3, namely, x = y. Therefore,

A separates points in K , which implies that A is dense in

C(K,R) by the Stone-Weierstrass Theorem (see Theorem 4

in Appendix). In other words, for any f ∈ C(K,R), we can

uniformly approximate f(ε)Ωx by the iterated Lie brackets

of the elements in {ε1Ωx, ε2Ωy, ε3Ωz}. Similarly, we can

prove that for any g, h ∈ C(K,R), g(ε)Ωy and h(ε)Ωz can

also be uniformly approximated by the same procedure. It

follows that Lie{ε1Ωx, ε2Ωy, ε3Ωz} = C(K, so(3)), where

Lie{ε1Ωx, ε2Ωy, ε3Ωz} denote the Lie algebra generate by

the set {ε1Ωx, ε2Ωy, ε3Ωz} and Lie{ε1Ωx, ε2Ωy, ε3Ωz} de-
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note its closure under the topology of uniform convergence,

which implies that the system in (6) is ensemble controllable

on C(K, SO(3)).

It is worth mentioning that the result of Theorem 1 still

holds if K is a locally compact subset of (R+)3, because the

condition of the Stone-Weierstrass Theorem can be relaxed

to functions defined on locally compact domains.

In the next section, we will utilize these results on SO(3)

and carry out an extension to analyze the controllability of

ensemble systems on SO(n) for n ≥ 3.

III. ENSEMBLE CONTROL ON SO(n)

A. A Review of the Lie Algebra so(n)

Let Eij ∈ R
n×n denote the matrix whose ijth entry is 1

and others are 0, and define Ωij = Eij − Eji, then Ωij

satisfies Ωij = −Ωji if i 6= j and Ωij = 0 if i = j.

Furthermore, the set B = {Ωij : 1 ≤ i < j ≤ n} forms

a basis of so(n), and we call B the standard basis of so(n).
The following lemma characterizes the Lie bracket relations

on the standard basis elements of so(n).

Lemma 2. The Lie brackets between the elements in B
satisfy the relations [Ωij ,Ωkl] = δjkΩil + δilΩjk + δjlΩki +
δikΩlj , where δ is the Kronecker delta function, i.e.,

δmn =

{

1 if m = n,

0 if m 6= n.

Proof. Notice that EijEkl = δjkEil, so [Eij , Ekl] =
δjkEil−δliEkj . Following the bilinearity of the Lie bracket,

we get

[Ωij ,Ωkl] = [Eij − Eji, Ekl − Elk]

= [Eij , Ekl]− [Eij , Elk]− [Eji, Ekl] + [Eji, Elk]

= δjkEil − δliEkj − δjlEik + δkiElj

− δikEjl + δljEki + δilEjk − δkjEli

= δjkΩil + δilΩjk + δjlΩki + δikΩlj .

According to Lemma 2, for any Ωij ,Ωkl ∈ B, [Ωij ,Ωkl] 6=
0 if and only if exactly one of the following equalities, i = l
j = k, i = k, j = l, holds.

B. Controllability of Systems on SO(n)

Controllability of systems evolving on compact, connected

Lie groups has been extensively studied [9, 10, 11, 12].

The central idea is with regard to whether the Lie algebra

generated by the control (and the drift) vector fields is

equivalent to the underlying Lie algebra of the Lie group.

Here, we recap the controllability results for a driftless

system defined on SO(n), given by

d

dt
X(t) =





m′

∑

i=1

ui(t)Bi



X(t), X(0) = I, (7)

where X(t) ∈ SO(n) is the state, Bi ∈ so(n) are linearly

independent, and ui(t) ∈ R are the control functions.

Because Lie({Bi : i = 1, . . . ,m}) is a Lie subalgebra of

so(n), it is a Lie algebra whose dimension is less than or

equal to the dimension of so(n), that is, n(n− 1)/2. Then,

if the dimension of Lie({Bi : i = 1, . . . ,m}) is n(n− 1)/2,

then Lie({Bi : i = 1, . . . ,m}) = so(n) holds, which implies

the system in (7) is controllable on SO(n) by the Lie algebra

rank condition (see Theorem 3 in Appendix). Specifically, we

will forcus on systems on SO(n) in the form of

d

dt
X(t) =

[

m
∑

k=1

uk(t)Ωik,jk

]

X(t), X(0) = I, (8)

where Ωik,jk ∈ B for all k = 1, . . . ,m.

In order to facilitate our development of controllability

conditions for the system in (8), we use the elements of

the symmetric group on n symbols Sn to represent the

subsets of B, i.e., the standard basis of so(n). Recall that

every element σ ∈ Sn is a permutation on n letters, i.e., a

bijective map σ : Zn → Zn, where Zn is a set containing n
elements, conventionally, Zn = {1, . . . , n}. In addition, an

equivalence relation on Zn can be defined by a ∼ b if and

only if b = σk(a) for some k ∈ Z, where a, b ∈ Zn. The

equivalence classes in Zn determined by this equivalence

relation is called the orbits of σ. A permutation σ ∈ Sn

is a cycle if it has at most one orbit containing more than

one element, and the length of a cycle is the number of

elements in its largest orbit. A cycle of length 2 is called a

transposition. Any permutation of a finite set of at least two

elements is a product of transpositions [13].

Now, we will identify each subset of B with an element in

Sn. Let P(B) denote the power set of B, and define a map ι :
P(B) → Sn by {Ωi1,j1 , . . . ,Ωik,jk} 7→ (ik, jk) · · · (i1, j1),
where (is, js) is the cyclic notation of the permutation

(

1 · · · is . . . js . . . n
1 · · · js . . . is . . . n

)

for each s = 1, . . . , k.

Lemma 3. The map ι : P(B) → Sn is surjective.

Proof. Because any permutation σ ∈ Sn can be writ-

ten as a product of transpositions [13], there exist 1 ≤
i1, j1, . . . , im, jm ≤ n such that ik < jk for all k = 1, . . . ,m
and σ = (im, jm) . . . (i1, j1). Let S = {Ωi1,j1 , . . . ,Ωim,jm},

we then have ι(S) = σ by the definition of the map ι. Since

σ ∈ Sn is arbitrary, the map ι is surjective.

Using the terminologies from the symmetric group theory

introduced above, we can algebraically construct a necessary

and sufficient controllability condition for the systems de-

fined on SO(n) in the form of (8). This will provide powerful

machinery for analyzing controllability of the ensemble

systems on SO(n), which will be described in Section III-C.

Theorem 1. The control system on SO(n) as in (8)

is controllable if and only if there is a subset S of

{Ωi1,j1 , . . . ,Ωim,jm} such that ι(S) is a cycle of length n.

Before proving the theorem, we will explore the rela-

tionship between the Lie bracket operation on B and the
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product operation on Sn. For any Ωij ,Ωkl ∈ B, by Lemma

2, we have [Ωij ,Ωkl] 6= 0 if and only if exactly one of

the following equalities, i = l j = k, i = k, j = l,
holds, say j = k, then [Ωij ,Ωkl] = Ωil. In this situation,

ι(Ωkl)ι(Ωij) = ι(Ωjl)ι(Ωij) = (j, l)(i, j) = (i, j, l). On the

other hand, if [Ωij ,Ωkl] = 0, then there are two cases: (i)

i = k and j = l, then (i, j)(k, l) = e, where e ∈ Sn denotes

the identity map; (ii) i, j, k, l are all distinct, then (i, j)(k, l)
is a permutation as a product of two disjoint transpositions.

Remark 1. According to the relationship between the Lie

bracket operation on B and the product operation on Sn

described above, we reach the following conclusions:

1) Under the map ι, Lie bracketing elements in B it-

eratively will increase the length of the cycle if the

result of the iterated Lie brackets is nontrivial and each

iteration generates a new element. More precisely, in

this situation, l times iterated Lie bracket operations will

increase the length of the cycle by l.
2) If the image of a subset S of B, where S =

{Ωi1,j1 , . . . ,Ωim,jm}, contains a cycle with length

greater than or equal to J , then the cardinality of the

index set J = {i1, j1, . . . , im, jm}, which is denoted by

|I|, must satisfy l ≤ |I| ≤ 2m− (l − 2).

Example 1. Let B4 = {Ωij : 1 ≤ i < j ≤ 4} be the set of

standard basis for the Lie algebra so(4). Consider the subset

S = {Ω12,Ω23,Ω34} of B4. Because S contains 3 elements,

we can only proceed iterated Lie brackets with different

elements in S twice. By Lemma 1, we have [Ω12,Ω23] = Ω13

and [[Ω12,Ω23],Ω34] = Ω14, which also shows that each

iteration of the successive Lie brackets results in a nonzero

and non-repeating element of B4. In addition, under the map

ι, each element in S corresponds to a transposition, i.e.,

a cycle of length 2, and taking successive Lie bracketing

for two times increases the length of a transposition by 2.

Hence, the image of S under ι should be a cycle of length 4.

We know that ι(S) = (3, 4)(2, 3)(1, 2) = (1, 2, 3, 4) which

is exactly a cycle of length 4, thus the first conclusion of

Remark 1 is verified. If we proceed Lie bracketing with

the element in S one more time, e.g., [Ω14,Ω13] = Ω34,

which is already in S, then under the map ι, we have

(3, 4)(1, 2, 3, 4) = (1, 2, 4), and the length of the cycle is

decreased. Hence, in order to increase the length of the cycle,

the condition of generating a new element at each iteration

of Lie bracketing is essential.

Now, we extend S to S ′ = S ∪ {Ω24}. Because Ω24 =
[Ω23,Ω34] and Ω23,Ω34 ∈ S, Ω24 can be generated by

iterated Lie brackets of the elements in the proper subset

S of S ′, and thus Lie(S)=Lie(S ′). In other words, Ω24

is redundant when we study the Lie algebra generated by

S ′. Applying the definition of the map ι to S ′, we obtain

ι(S ′) = ι(Ω24)ι(S) = (2, 4)(1, 2, 3, 4) = (1, 4)(2, 3) which

is no longer a cycle. Therefore, Lie bracketing redundant

elements does not result in a increase of the length of the

cycle either. In addition, every cycle in S4 must have length

less than or equal to 4, and thus a subset of B4 with 3

elements is enough to study the Lie algebra so(4).

Next, if we remove one element from S, e.g., define

S ′′ = S\{Ω34}, then the index set associated with S ′′ is

JS′′ = {1, 2, 2, 3} = {1, 2, 3} whose cardinality is |JS′′ | =
3. According to the second conclusion of Remark 1, ι(S ′′)
cannot be a cycle of length greater than 3. By the definition

of ι, ι(S ′′) = (1, 2, 3) which is exactly a cycle of length 3.

If we replace Ω23 by Ω34 in S ′′, namely, S ′′ = {Ω12,Ω34}
now, then |JS′′ | = 4. However, in this case, we cannot

produce a cycle of length 3 either, because 2m− (l − 2) =
2× 2− (3− 2) = 3 < 4, which violates 2) in Remark 1. As

a result, ι(S ′′) = (1, 2)(3, 4) and [Ω12,Ω34] = 0.

Next, we will prove Theorem 1.

(Proof of Theorem 1): The system in (8) is controllable on

SO(n) if and only if Lie({Ωi1,j2 , . . . ,Ωim,jm}) = so(n) (see

Theorem 3 in Appendix), therefore, it is equivalent to show

that Lie(S) = so(n) if and only if ι(S) is a cycle of length n
for some subsets S of {Ωi1,j2 , . . . ,Ωim,jm}. Because a cycle

of length n can be decomposed into a product of at least n−1
transpositions, m has to be greater than or equal to n−1. So,

it suffices to assume that the cardinality of S is n− 1, and,

without loss of generality, let S = {Ωi1,j1 , . . . ,Ωin−1,jn−1
}.

(Necessity): if the system in (8) is controllable, then

Lie(S) = so(n), and thus any element in B can be

generated by the iterated Lie brackets of elements in

S. Pick Ωst ∈ B\S, there exist Ωi1,j1 , . . . ,Ωil,jl , l ≤
n − 1 such that

∏2
k=l adΩik,jk

(Ωi1,j1) = ±Ωst, and so

[Ωik,jk ,Ωik+1,jk+1
] 6= 0 for all k = 1, . . . , l− 1. By Remark

1, σ =
∏1

k=l ι(Ωik ,jk) is a cycle of length l+1. If l = n−1,

then we are done. If l < n − 1, then the index set J =
{i1, j1, . . . , il, jl} is a proper subset of Zn = {1, . . . , n}.

Pick distinct elements of B, say Ωs1,t1 , . . . ,Ωsn−l−1,tn−l−1
,

such that s1 = t and tk+1 = sk ∈ Zn\J for all k =
2, . . . , n−l−2. In addition, we also request tk 6= tk+1 for all

k = 1, . . . , n− l−2. Then, there are Ωil+1,jl+1
, . . . ,Ωin,jn ∈

S\{Ωi1,j1 , . . . .Ωil,jl} such that

l+1
∏

k=l+1+a

adΩik,jk
(Ωij) =

1
∏

k=a

adΩsi,ti
(Ωij)

holds for all a = 1, . . . , n−l−1. By Remark 1, we have σ′ =
∏l+1

k=l+1+a(Ωik,jk) that is a cycle of length n− l. Notice that

{j} = J∩J ′, where J ′ = {il+1, jl+1, . . . , in, jn}, and hence

σ and σ′ are not disjoint. Therefore, σ′σ =
∏n

k=1 ι(Ωik,jk)
is a cycle of length n.

(Sufficiency): Assume that ι(S) is a cycle of length n.

According to Remark 1, the cardinality of the index set J =
{i1, j1, . . . , in−1, jn−1} satisfies n ≤ |J | ≤ 2(n− 1)− (n−
2) = n, so |J | = n, which implies J = {1, . . . , n}. Then,

for any a, b ∈ J such that a < b and Ωab 6∈ S, there are some

indices in J equal to them. Without loss of generality, assume

is = a and jt = b. If {is, js}∩{it, jt} 6= ∅, then js = it, and

thus [Ωis,js ,Ωit,jt ] = Ωis,jt = Ωab; otherwise, because ι(S)
is a cycle of length n, there exists some Ωik1 ,jk1

∈ S such

that {is, js} 6= {ik1
, jk1

} and {is, js} ∩ {ik1
, jk1

} 6= ∅, i.e.,

there is exactly one of the following equalities is = ik1
, is =

jk1
, js = ik1

, js = jk1
holds. Suppose such Ωik1 ,jk1

does
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not exist, then we have two cases: (1) {is, js} = {ik, jk}
for all k = 1, . . . , n− 1, then the index set J = {is, js} has

cardinality 2, which contradicts with the fact |J | = n ≥ 3;

and (2) {is, js} ∩ {ik, jk} = ∅ for all k = 1, . . . , n − 1,

so that ι(Ωis,ts) = (is, js) is a transposition disjoint from

ι(S\{Ωis,js}), then ι(S) has at least two orbits and one of

them is (is, js), which contradicts the assumption that ι(S)
is a cycle with only one orbit.

Next, if {ik1
, jk1

} ∩ {it, jt} 6= ∅, then

[[Ωis,js ,Ωik1 ,jk1
],Ωit,jt ] = ±Ωab. If {is, js} ∩ {ik1

, jk1
} =

∅, then pick Ωik2 ,jk2
∈ S such that {ik1

, jk1
} 6= {ik2

, jk2
}

and {ik1
, jk1

} ∩ {ik2
, jk2

} 6= ∅. Repeat this procedure until

we get ΩikN ,jkN
∈ S such that {ikN

, jkN
} ∩ {it, jt} 6= ∅.

Because S is a finite set, this procedure will stop in

finite steps. Let s = k0 and t = kN+1, and notice that

the sequence of indices {ik0
, jk0

},. . . ,{ikN+1
, jkN+1

}
are distinct and there is exactly one of the following

equalities il = il+1, iljl+1, jl = il+1, jl = jl+1 holds for

all l = 0, 1, . . . , N + 1. The relationship between the Lie

bracket operation on B and the product operation on Sn

gives
∏1

l=N+1 adΩil,jl
(Ωi0,j0) = Ωab or −Ωab. Therefore,

we can generate any Ωij ∈ B by the iterated Lie brackets of

elements in S, and so Lie(S) = so(n), which implies that

the system (8) is controllable.

�

Theorem 1 provides not only an alternative approach to

effectively examine the controllability of systems defined

on SO(n) through the notion of permutation group, but

also a systematic procedure to characterize the controllable

submanifold when the system is not fully controllable.

Corollary 1. The controllable submanifold of the sys-

tem in (8) is uniquely determined by ι(S), where S ⊆
{Ωi1,j1 , . . . ,Ωim,jm}.

Proof. Because the map ι is surjective by Lemma 3, it suf-

fices to show that every permutation determines a subgroup

of SO(n). Let σ ∈ Sn be a cycle, say σ = (a1, . . . , ak),
then there exists some F ∈ P(B) such that ι(F) = σ by

the subjectivity of ι. Thus, every Ωai,aj
can be generated

by the iterated Lie brackets of elements in F through

the procedure in the proof of Theorem 1, which gives

Lie(F) = span{Ωai,aj
: 1 ≤ i, j ≤ k and ai < aj}. As

a Lie subalgebra, Lie(F) is closed under the Lie bracket

operation, so Lie(F) determines an involutive distribution

on SO(n). Applying the Frobenius Theorem, Lie(F) is

complete integrable. Let G be the connected Lie subgroup

of SO(n) whose Lie algebra is Lie(F), then by the Lie cor-

respondence Theorem [14], the integral manifolds of Lie(F)
are exactly GX(0), where X(0) is the initial condition of

the system (8). In addition, the collection of submanifolds

{GX(0)}X(0)∈SO(n) forms a foliation of SO(n).

C. Controllability of Ensemble Systems on SO(n)

In this subsection, we will use the tools developed in

Sections II-B and III to analyze ensemble controllability of

systems defined on SO(n).

Theorem 2. Consider an ensemble of systems evolving on

SO(n), given by

d

dt
X(t, ε) =

[

m
∑

k=1

εkuk(t)Ωik,jk

]

X(t, ε), X(0, ε) = I,

(9)

where ε = (ε1, . . . , εm)′ ∈ K ⊂ (R+)m, K is compact,

X(t, ·) ∈ C(K, SO(n)), uk(t) ∈ R for all k = 1, . . . ,m,

and m ≥ n−1. Then, the ensemble systems in (9) is ensemble

controllable on C(K, SO(n)) if and only if there is a subset

S of {Ωi1,j1 , . . . ,Ωim,jm} such that ι(S) is a cycle of length

n.

Proof. (Necessity): If the system in (9) is ensemble control-

lable, then each single system corresponding to a fixed ε ∈ K
is also controllable. By the Theorem 1, there is a subset S
of {Ωi1,j1 , . . . ,Ωim,jm} such that ι(S) is a cycle of length

n.

(Sufficiency): If there is a subset S of F =
{Ωi1,j1 , . . . ,Ωim,jm} such that ι(S) is a cycle of length n,

then for any Ωij ∈ B\F , it can be generated by iterated

Lie brackets of the elements in S. Applying the generating

procedure as presented in the proof of the Theorem 1 to

the set εF = {ε1Ωi1,j1 , . . . , εmΩim,jm}, we can produce

p(ε)Ωij , q(ε)Ωi+1,j , r(ε)Ωi,i+1 for some nonnegative mono-

mials p, q, r defined on K . Let Rp,Rq,Rr denote the ranges

of p, q, r, respectively, then by the continuity of monomial

functions, these are compact subsets of R
+, and so is their

cartesian product R = Rp × Rq × Rr by the Tychonoff’s

product theorem [15]. Now, we can consider the following

reduced system characterized by p, q, r,

d

dt
X(t, η) =

[

v1(t)η1Ωij + v2(t)η2Ωi+1,j + v3(t)η3Ωi,i+1

]

·

X(t, η), (10)

where η = (η1, η2, η3)
′ = (p(ε), q(ε), r(ε))′ ∈ R, X(t, η) ∈

SO(n), and v1(t), v2(t), v3(t) ∈ R are controls. Notice that

{Ωij ,Ωi+1,j ,Ωi,i+1} forms a Lie subalgebra of so(n), which

is isomorphic to so(3), and, therefore, the system in (10)

is an ensemble on the space C(R, SO(3)). In Theorem 1,

we have shown that an ensemble system on SO(3) with

three controls and three parameter variations are uniformly

ensemble controllable on the space of continuous SO(3)-

valued functions defined on a compact subset of (R+)3, so

the system in (10) is ensemble controllable with respect to

the parameters ηk for k = 1, 2, 3, and its orbit manifold Mij

containing the identity matrix is a subgroup of C(K, SO(n))
which is isomorphic to C(R, SO(3)). Furthermore, one can

show that the set {Mij : 1 ≤ i, j ≤ n} forms a cover of

C(K, SO(n)). Since Ωij ∈ B is arbitrary, we have ensemble

controllability for the system in (9).

A direct result can be derived following Theorem 2.

Corollary 2. The ensemble system as in (9) can not be

controllable if the number of controls m is less than n− 1.

Proof. A cycle of length n cannot be decomposed as a
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product of transpositions with less than n− 1 terms.

Remark 2. An ensemble of systems on SO(2) cannot be

ensemble controllable. Because so(2) is a one dimensional

real vector space with the basis Ω12, an ensemble of systems

on SO(2) has the unique form

d

dt
X(t, ε) = εu(t)

[

0 −1
1 0

]

X(t, ε). (11)

However, so(2) is nilpotent, so we cannot generate terms as

εkΩij for k ≥ 2 through iterated Lie brackets. As a result,

Lie(εΩ12) is not a vector space over C(K,R), which implies

that the system in (11) is not ensemble controllable.

IV. CONCLUSION

In this paper, we study the control of time-invariant

bilinear ensemble systems defined on the special orthogonal

group parameterized by a vector of dispersion parameters,

which takes values over a positive, compact or locally com-

pact set. We construct an algebraic criterion using the theory

of symmetric groups to examine controllability as well as

to characterize the controllable submanifold of an ensemble

system on SO(n). We also show that controllability of each

individual subsystem in the ensemble infers controllability of

the whole ensemble for the systems on SO(n). Comparing

with the classical Lie algebra rank condition, our approach

offers a transparent and efficient verification for determining

controllability or identifying controllable submanifolds for

uncontrollable systems. The established framework is imme-

diately applicable and extendable to study broader classes

of ensemble systems on Lie groups, e.g., on the special

Euclidean group SE(n) that is closely related to SO(n).

V. APPENDIX

Theorem 3. Let G be a compact connected Lie group and

g be its Lie algebra, then a driftless bilinear system on G of

the form

d

dt
X(t) =

(

m
∑

i=1

ui(t)Bi

)

X(t),

where X(t) ∈ G, Bi ∈ g and ui(t) ∈ R, is controllable if

and only if Lie{B1, . . . , Bm} = g.

Proof. See [9] and [11].

Theorem 4. Let X be a locally compact Hausdorff space.

If A is a closed subalgebra of C0(X,R) that separates

points, then either A = C0(X,R) or A = {f ∈ C0(X,R) :
f(x0) = 0} for some x0 ∈ X , where C0(X,R) = {f ∈
C(X,R) : f vanishes at infty}.

Proof. See [16].
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