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Transformation of a Mismatched
Nonlinear Dynamic System into
Strict Feedback Form
Dynamic surface control is a robust nonlinear control technique. It is generally applied
to mismatched dynamic systems in strict feedback form. We have developed a new method
of defining states and state-dependent disturbances to transform a mismatched dynamic
system into strict feedback form. We apply this method to a multi-input multi-output
(MIMO) extended-state kinematic model of a bicycle. We show how a dynamic surface
controller can be used for position tracking of the bicycle. The performance of the
dynamic surface controller is compared with that of a controller designed using feedback
linearization. Transformation of the dynamic system into strict feedback form allows us to
successfully apply dynamic surface control. Both the dynamic surface controller and the
feedback linearization controller perform well in the absence of disturbances. The dy-
namic surface controller is more robust when disturbances are introduced; however, a
large control effort is required to reject the disturbances. Our method of defining new
states and state-dependent disturbances to transform mismatched nonlinear dynamic sys-
tems into strict feedback form could be used on other systems requiring robust nonlinear
control.
�DOI: 10.1115/1.4003795�

Keywords: strict feedback form, mismatched system, nonlinear control, dynamic surface
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Introduction
Nonlinear control techniques are an obvious choice when sys-

em linearization yields uncontrollable linear models. Two com-
on methods for controlling nonlinear systems are feedback lin-

arization �FL� and sliding control �1�. Feedback linearization is a
ay of simplifying nonlinear controller design by transforming
riginal system models into equivalent models that can be con-
rolled with linear techniques. While effective at controlling sys-
ems with precise models �and precise derivatives of those mod-
ls�, feedback linearization is not robust with respect to model
ncertainty. Sliding control is a more robust method for control-
ing nonlinear systems. Traditional techniques for sliding control,
s presented in Ref. �1�, work well for systems that satisfy the
matching condition” �2�, meaning that a control exists in each
hannel with uncertainty; however, these techniques do not work
or mismatched systems because they would require bounding the
erivative of the uncertainty, an impossible task. Alternative tech-
iques, which avoid this problem, include integrator backstepping
2� and using multiple sliding surfaces �3�. However, these tech-
iques lead to an “explosion of terms” �4�.

Dynamic surface control �DSC�, as described in Ref. �4�, is a
obust technique used to control mismatched nonlinear systems.
he method employs low-pass filters that introduce a delay �and

herefore error� in exchange for avoiding an “explosion of terms.”
SC has been used to control many different types of systems

ncluding remotely operated underwater vehicles �5�, automated
ars �6�, and ships �7�.

DSC is generally applied to mismatched dynamic systems in
trict feedback form �4�, a subset of semistrict feedback form
8,9�. In this paper, we present a new method of defining states
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and state-dependent disturbances to transform a mismatched dy-
namic system into strict feedback form. We apply this method to a
nonlinear, multi-input multi-output �MIMO�, extended-state, mis-
matched, kinematic model of a bicycle. Our goal is for the bicycle
to track a desired trajectory, a control objective that has been
explored by many researchers �e.g., Refs. �10–12��. The bicycle
model and variations on it have also been used to design steer-by-
wire controllers for automobiles, by ignoring the roll degree of
freedom �e.g., Refs. �13,14��. To demonstrate the robustness of the
dynamic surface controller, we compare its performance to that of
a controller designed using feedback linearization. Note that an
earlier version of this paper was presented at the 2010 American
Controls Conference �15�.

The following section includes a description of the system, the
dynamic model, and the controllability analysis. Section 3 de-
scribes the design of a controller using feedback linearization.
Section 4 describes the method of defining states and state-
dependent disturbances to transform the system into strict feed-
back form, and the design of a dynamic surface controller. Section
5 presents simulation results, and Section 6 concludes.

2 Dynamic System Description and Controllability
A bicycle can be modeled as a four state system, as illustrated

in Fig. 1. The states are as follows: x1 is the distance in x to the
back wheel �with respect to a fixed coordinate system�, x2 is the
distance in y to the back wheel �with respect to the same fixed
coordinate system�, �1 is the heading angle �angle between the
bicycle axis and the x axis�, and �2 is the steering angle �angle
between axis of the front wheel and the bicycle axis�.

The rider controls the forward velocity of the bicycle and the
angular velocity of the handle bars. Therefore, the following two
inputs are used: u1 is the forward velocity of the bicycle and u2 is
the angular velocity of the handle bars.

The kinematic relations governing the motion of the bicycle are
as follows:

˙
x1 = cos��1 + �2�u1 �1�
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ẋ2 = sin��1 + �2�u1 �2�

�̇1 =
sin��2�u1

L
�3�

�̇2 = u2 �4�
he first two state equations, specifying the velocity of the bicy-
le’s back wheel in x and y, are derived from geometry. The third
tate equation, which defines how the steering angle affects the
eading angular velocity, is given in Ref. �16�. Here, sin��2�u1 is
he velocity of the bicycle perpendicular to the bicycle axis and L,
he distance between the wheel axles, is the radius of the turn. The
ourth state equation results from the inability of the rider to con-
rol the position of the handle bars directly; instead, the rider
ontrols the angular velocity of the handle bars.

We set

� =
sin��2�

L
�5�

here � is a parameter characterizing the steering angle. A bicy-
le’s steering angle, �2, is small and we normalize L to 1 so �
�2. Also, �1��2 so �1+�2��1. For simplicity, we set �=�1.

he simplified state equations are

ẋ1 = cos���u1 �6�

ẋ2 = sin���u1 �7�

�̇ = �u1 �8�

�̇ = u2 �9�
or the purpose of this analysis, the output equation is defined as

he position of the back wheel, which we assume we can measure
irectly

y = �y1

y2
� = �x1

x2
� �10�

ritten in standard form, the nonlinear system can be expressed
s

ẋ = f�x� + g1�x�u1 + g2�x�u2 �11�

here f�x�=0,

x = �
x1

x2

�

�
	, g1�x� = �

cos���
sin���

�

0
	, and g2�x� = �

0

0

0

1
	

To determine the accessibility �17� of the full MIMO nonlinear

Fig. 1 Geometry of a bicycle
ystem, we form the accessibility matrix:
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C = �g1,g2,�g1,g2�,�g1,�g1,g2��� = �
cos��� 0 0 − sin���
sin��� 0 0 cos���

� 0 1 0

0 1 0 0
	
�12�

where �g1 ,g2� is the Lie bracket between g1 and g2. We find that
det�C�=−1. C is full rank for all values of � and � so the system
is locally accessible everywhere. Moreover, since f�x�=0, the sys-
tem is controllable �18�. This means that for any initial state and
any target state, there exists a control function that will transfer
the bicycle from the initial state to the target state in finite time.

3 Control Using Feedback Linearization
MIMO input/output feedback linearization of this system is

achieved through use of dynamic extension �2,17,18�, which re-
quires the definition of new states corresponding to inputs of the
original system. Ultimately, dynamic extension allows us to de-
couple the derivatives of the rows of the output equation, which
we will set equal to a synthetic input, allowing us to solve for the
control input.

To illustrate the need to use dynamic extension, we first differ-
entiate the output equation �10� until the control explicitly ap-
pears:

ẏ = l1 + J1�u1

u2
� �13�

where l1=0 and J1 is the decoupling matrix:

J1 = �cos��� 0

sin��� 0
� �14�

Unfortunately, J1 is singular so the two equations cannot be de-
coupled.

Using dynamic extension, we define a new state x3=u1 and its
derivative ẋ3=u3, where u3 controls the acceleration of the bi-
cycle. We now have a redefined system with five states:

ẋ1 = cos���x3 �15�

ẋ2 = sin���x3 �16�

�̇1 = �x3 �17�

�̇ = u2 �18�

ẋ3 = u3 �19�
Differentiating Eq. �10� until the control explicitly appears yields

ÿ = l2 + J2�u2

u3
� �20�

where l2 is a function of the states and J2 is the new decoupling
matrix:

J2 = �0 cos���
0 sin��� � �21�

Unfortunately, J2 is also singular so we apply dynamic extension
again and define a second new state x4=u3 and its derivative ẋ4
=u4, where u4 controls the jerk of the bicycle. We now have a
redefined system with six states:

ẋ1 = cos���x3 �22�

ẋ2 = sin���x3 �23�

˙
� = �x3 �24�
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�̇ = u2 �25�

ẋ3 = x4 �26�

ẋ4 = u4 �27�
ifferentiating Eq. �10� until the control explicitly appears yields

y� = l3 + J3�u2

u4
� �28�

here

l3 = �− cos����2x3
3 − 3 sin����x3x4

− sin����2x3
3 + 3 cos����x3x4

� �29�

nd J3 is the new decoupling matrix:

J3 = �− sin���x3
2 cos���

cos���x3
2 sin��� � �30�

e are now able to decouple the two equations because J3 is full
ank, except in the case where the bicycle’s velocity, x3, is zero.
he relative degree of each output equation is 3 so the relative
egree of the system is 6, which equals the order of the system.
herefore, there are no internal dynamics.
We can now solve for the control input, û� �u2 ,u4�T. Let the

ynthetic input, vFL, be defined as follows:

vFL = y� �31�
e assume that we know the desired trajectory of the bicycle

x1d�t� ,x2d�t�� and can differentiate it freely. We chose a simple
racking control law:


 d

dt
+ �1�3

�1 = 0 �32�


 d

dt
+ �2�3

�2 = 0 �33�

here �1 and �2 are the strictly positive constants and �1 and �2
re the differences between the actual trajectory and the desired
rajectory, specifically �1=x1−x1d and �2=x2−x2d. We can now
rite an explicit expression for û:

û = J3
−1�vFL − l3� �34�

here l3 and J3 are defined in Eqs. �29� and �30�, and

vFL = �x�1d − 3�1�̈1 − 3�1
2�̇1 − �1

3�1

x�2d − 3�2�̈2 − 3�2
2�̇2 − �2

3�2
� �35�

Dynamic Surface Control
In this section, we describe the design of a dynamic surface

ontroller to control the extended-state uncertain system, which is
ritten as

ẋ1 = cos���x3 + w1 �36�

ẋ2 = sin���x3 + w2 �37�

�̇ = �x3 + w3 �38�

�̇ = u2 + w4 �39�

ẋ3 = x4 �40�

ẋ4 = u4 �41�
ere we have simply modified the extended-state equations, Eqs.

22�–�27�, by adding disturbances �w1, w2, w3, and w4� to the first
our equations. We next present a method for defining states and

tate-dependent disturbances to transform the system into strict
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feedback form. We then define the sliding surfaces and derive the
control law.

4.1 Transformation into Strict Feedback Form. It is
straightforward to use DSC if a system is in strict feedback form,
as described in Ref. �5�. For a single-input single-output �SISO�
system, strict feedback form is as follows:

ż1 = z2 + f1�z1� + �f1�z1�

ż2 = z3 + f2�z1,z2� + �f2�z1,z2�

] �42�

żn−1 = zn + fn−1�z1, . . . ,zn−1� + �fn�z1, . . . ,zn−1�

żn = fn�z, . . . ,zn� + gn�z, . . . ,zn�u + �fn�z, . . . ,zn�

where zi are the states, f i�zj , . . . ,zk� and gi�zj , . . . ,zk� are the func-
tions of states zj −zk, �f i�zi , . . . ,zj� are the model uncertainties,
and u is the control input. As can be seen, the extended-state
uncertain system in Eqs. �36�–�41� is not in strict feedback form.

To put the system in strict feedback form, we have developed a
new method of defining new states and state-dependent distur-
bances. Since the bicycle has been modeled as a dual-input dual-
output system, we consider the state equations in pairs. To form
the first two state equations, Eqs. �36� and �37� are rewritten as

ẋ1 = x5 + w1 �43�

ẋ2 = x6 + w2 �44�

where x5=cos���x3 and x6=sin���x3. Note that w1 and w2 are the
same disturbances as in Eqs. �36� and �37�. We assume that they
are bounded with �w1���1 and �w2���2, where �1 and �2 are
known positive constants.

Then, x5 and x6 are differentiated to form the next two state
equations:

ẋ5 = x7 + w5 �45�

ẋ6 = x8 + w6 �46�

where

x7 = − sin����x3
2 + cos���x4 �47�

x8 = cos����x3
2 + sin���x4 �48�

w5 = − sin���x3w3 �49�

w6 = cos���x3w3 �50�

Note that w5 and w6 are state-dependent disturbances. We assume
that w3, from Eq. �38�, is bounded with �w3���3, where �3 is a
known positive constant. Assuming we have access to the state,
we can compute the uncertainty bounds, �5 and �6, for w5 and w6,
respectively:

�w5� � �sin���x3�3� = �5 �51�

�w6� � �cos���x3�3� = �6 �52�

Since x3 and � change over time, the uncertainty bounds change
over time and must be recomputed at each time step. Since this is
a physical system, x3 will never be infinite, so �5 and �6 will never
be infinite.

Finally, x7 and x8 are differentiated to form the final two state
equations, in which u2 and u4 explicitly appear:

ẋ7 = − cos����2x3
3 − 3 sin����x3x4 − sin���x3

2u2 + cos���u4 + w7
�53�

JULY 2011, Vol. 133 / 041010-3
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ẋ8 = − sin����2x3
3 + 3 cos����x3x4 + cos���x3

2u2 + sin���u4 + w8

�54�

here

w7 = − �cos����x3
2 + sin���x4�w3 − sin���x3

2w4 �55�

w8 = − �sin����x3
2 − cos���x4�w3 + cos���x3

2w4 �56�

gain, w7 and w8 are state-dependent disturbances. We assume
hat w4, from Eq. �39�, is bounded with �w4���4, where �4 is a
nown positive constant. Assuming we have access to the state,
e can compute the uncertainty bounds, �7 and �8, for w7 and w8,

espectively:

�w7� � max���cos����x3
2 + sin���x4��3 	 sin���x3

2�4�� = �7

�57�

�w8� � max���sin����x3
2 − cos���x4��3 	 cos���x3

2�4�� = �8

�58�

gain, since the states �x3, x4, �, and �� change over time, the
ncertainty bounds change over time and must be recomputed at
ach time step. Since this a physical system, x3 and x4 will never
e infinite, so �7 and �8 will never be infinite.

4.2 Sliding Surfaces and Control Law. Now we define slid-
ng surfaces and derive the control law using the DSC design
lgorithm in Ref. �5�. Since the bicycle has been modeled as a
ual-input dual-output system, we consider the sliding surfaces in
airs. As stated previously, we assume that we know the desired
rajectory of the bicycle �x1d�t� ,x2d�t�� and can differentiate it
reely. As the goal is to send x1 to x1d and x2 to x2d, we define the
rst two sliding surfaces, S1 and S2, to be

S1 = x1 − x1d �59�

S2 = x2 − x2d �60�

he sliding condition is

S1Ṡ1 � − k1S1
2 �61�

S2Ṡ2 � − k2S2
2 �62�

here k1 and k2 are the positive control gains. Taking derivatives
f S1 and S2, we find

Ṡ1 = ẋ1 − ẋ1d = x5 + w1 − ẋ1d �63�

Ṡ2 = ẋ2 − ẋ2d = x6 + w2 − ẋ2d �64�

nfortunately, we cannot arbitrarily choose x5 and x6 to satisfy the
liding condition because the control does not explicitly appear in
he equations for x5 and x6. Therefore, we define synthetic inputs,

5 and x̄6, as follows:

x̄5 = ẋ1d − �k1 + �1�S1 �65�

x̄6 = ẋ2d − �k2 + �2�S2 �66�

ere, the uncertainty bounds, �1 and �2, are added to the control
ains, k1 and k2, to compensate for the unknown disturbances, w1
nd w2.

Our goal is now to drive x̄5 to some desired state, x5d, and x̄6 to
ome desired state, x6d. The desired states are determined from
rst-order filters:


1ẋ5d + x5d = x̄5 �67�

˙ ¯

2x6d + x6d = x6 �68�

41010-4 / Vol. 133, JULY 2011
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where 
1 and 
2 are the filter parameters.
To drive the synthetic inputs to their desired states, we define

the next two sliding surfaces, S3 and S4, as

S3 = x5 − x5d �69�

S4 = x6 − x6d �70�

The sliding condition is

S3Ṡ3 � − k3S3
2 �71�

S4Ṡ4 � − k4S4
2 �72�

where k3 and k4 are the positive control gains. Taking derivatives
of S3 and S4, we find

Ṡ3 = ẋ5 − ẋ5d = x7 + w5 − ẋ5d �73�

Ṡ4 = ẋ6 − ẋ6d = x8 + w6 − ẋ6d �74�

The control does not explicitly appear in the equations for x7 and
x8, so again we cannot arbitrarily chose x7 and x8 to satisfy the
sliding condition. Therefore, we define synthetic inputs, x̄7 and x̄8,
as follows:

x̄7 = ẋ5d − �k3 + �5�S3 �75�

x̄8 = ẋ6d − �k4 + �6�S4 �76�

Again, the uncertainty bounds are added to the control gains to
compensate for the unknown disturbances.

Our goal is now to drive x̄7 to some desired state, x7d, and x̄8 to
some desired state, x8d. The desired states are determined from
first-order filters:


3ẋ7d + x7d = x̄7 �77�


4ẋ8d + x8d = x̄8 �78�

where 
3 and 
4 are the filter parameters.
To drive the synthetic inputs to their desired states, we define

the last two sliding surfaces:

S5 = x7 − x7d �79�

S6 = x8 − x8d �80�

The sliding conditions are

S5Ṡ5 � − k5S5
2 �81�

S6Ṡ6 � − k6S6
2 �82�

where k5 and k6 are the positive control gains. Taking derivatives
of S5 and S6, we find

Ṡ5 = ẋ7 − ẋ7d �83�

Ṡ6 = ẋ8 − ẋ8d �84�

Fortunately, the controls, u2 and u4, appear in the equations for ẋ7
and ẋ8, as shown in Eqs. �53� and �54�, so we can solve for û
= �u2 ,u4�T to satisfy the sliding condition in Eqs. �81� and �82�,
which results in

û = J−1�vDSC − l� �85�

where

J = �− sin���x3
2 cos���

cos���x3
2 sin��� � �86�

v =
ẋ7d − �k5 + �7�S5 �87�
DSC �
ẋ8d − �k6 + �8�S6

�
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l = � − cos����2x3
3 − 3 sin����x3x4

− sin����2x3
3 + 3 cos����x3x4.

� �88�

ote that we have added the uncertainty bounds, �7 and �8, to the
ontrol gains to compensate for the unknown disturbances w7 and
8.
Equation �85� is very similar to Eq. �34�, the control law de-

ived for the feedback linearization case. Specifically, we find J
J3 and l= l3. The difference is that the synthetic control v is now
function of the sliding surfaces, desired trajectories, control

ains, and disturbance bounds.
There exists a set of control gains, ki, and filter parameters 
i

uch that the system is semiglobally stable �5�. A method for
hoosing control gains and filter parameters is presented in Ref.
19�; however, we have simply chosen k and 
 through iteration,
s explained in Sec. 5.2. For reasons also explained in Sec. 5.2,
e impose control input bounds that lead to transient control input

aturation, resulting in a controller that is locally stable but is not
uaranteed to be semiglobally stable. While out of the scope of
his paper, future work could explore including the control input
ounds in the plant model and developing a controller that
chieves semiglobal stability despite control input saturation.

Simulation and Results

5.1 Feedback Linearization. Simulations were carried out to
est the performance of the feedback linearization controller in
racking a desired trajectory, which was chosen to be x1d= t and
2d=sin�t�+ t. MATLAB’s ordinary differential equation �ODE�
olver ode45 �with default options� was employed to solve Eqs.
22�–�27�. Initial conditions were chosen as follows:
x1o ,x2o ,�o ,�o ,x3o ,x4o�= �0.5,2 ,0.01,0 ,0.01,0�. The control in-
uts were forced to remain be between �10 and 10 to ensure
onvergence of the ODE solver. This was achieved by using Eq.
34� to compute the desired value of the control and then equating
he actual control to either the desired control, if the desired con-
rol was within the allowed range, or the closest bound ��10 or
0�, if the desired control was outside of the allowed range.

Results of the simulation show that though the bicycle does not
tart on the desired trajectory, after an initial period of time it
onverges to and stays on the desired trajectory, for an appropriate
hoice of the parameter �. Through iteration � was chosen to be
= ��1 ,�2�T= �5,5�T. For integer values of �1=�2�5, the bicycle
as unable to converge to the desired trajectory due to saturation
f the control input. For integer values of �1=�2
5, the bicycle
onverged to the trajectory more slowly than if �1=�2=5. In the
eneral case, the best choice of �1 and �2 is a function of the
ontrol input bounds.

To test the robustness of the feedback linearization controller, it
as also used to control the uncertain system, Eqs. �36�–�41�. For

he purposes of simulation, the disturbances �unknown to the con-
roller� included a static offset and a random component:

w1 = 0.10 + 0.02r1�t� �89�

w2 = 0.15 + 0.02r2�t� �90�

w3 = 0.20 + 0.02r3�t� �91�

w4 = 0.10 + 0.02r4�t� �92�

here ri�t�
N�0,1�. Physically, these disturbances represent
odel uncertainty in addition to unknown forcing that affects the

icycle’s velocity and its heading and steering angular velocities.
Results of the simulation are presented in Figs. 2 and 3. Figure
shows the tracking error in x1 and x2. There exists a steady state

rror between the desired trajectory and the actual trajectory.
ore error exists in x2 because the static offset chosen for w2 was

arger than that chosen for w1, as shown in Eqs. �89� and �90�. It

s clear from Fig. 2 that feedback linearization is unable to com-
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pensate for the disturbances that have been introduced.
Figure 3 shows control inputs u2 �angular velocity� and u4 �sec-

ond derivative of velocity, or jerk�. While the bicycle is finding
the trajectory, the control input saturates. After converging to the
trajectory, the inputs settle into a steady state pattern, which is
oscillatory because of the sinusoidal nature of the desired trajec-
tory. Figure 3 also includes an approximation of the desired for-
ward velocity, u1, computed from u4 using MATLAB’s numerical
integrator trapz. Note that since we control the forward velocity of
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Fig. 2 Tracking error in x1 and x2 when MIMO FL and MIMO
DSC are applied to the uncertain system
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Fig. 3 Control inputs u2 and u4 and an approximation of u1
„computed from u4… when MIMO FL and MIMO DSC are applied

to the uncertain system
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Downloaded Fr
he bicycle by specifying the bicycle’s jerk, we have designed a
ynamic controller. Applying this controller to a physical system
ould require integrating u4 in real time. Numerical integration
ould lead to errors, which are not captured in this simulation.
As a result of Eq. �5�, the physical values of the various inputs

re related to the distance, L. For L=1 m, the maximum jerk is
0 m /s3, the maximum acceleration is 
5 m /s2 �or about 0.5
�, and the maximum forward velocity is 
3 m /s �or about 6.7
/h� over the time period t=0 s to t=20 s. Expanding the allow-

ble range for the inputs would increase the maximum jerk, ac-
eleration, and velocity.

5.2 Dynamic Surface Control. Using DSC, we are able to
educe the steady state error that results when the uncertain sys-
em is controlled using feedback linearization. Simulations were
erformed to test the performance of the dynamic surface control-
er. The same desired trajectory and input bounds used in the
eedback linearization case were used in the DSC case. Again,
ATLAB’s ode45 was employed to solve the state equations, Eqs.

36�–�41�, in addition to the four filter equations, Eqs. �67�, �68�,
77�, and �78�. Initial conditions for the state equations were cho-
en as follows: �x1o ,x2o ,�o ,�o ,x3o ,x4o�= �0.5,2 ,0.01,0 ,0.01,0�.
nitial conditions for the filter equations were computed from the
nitial conditions for the state equations. The uncertainty bounds
1, �2, and �4 were each assumed to be 0.2, and �3 was assumed
o be 0.25. The uncertainty bounds �5, �6, �7, and �8, which
hange over time as a function of the state, were calculated at
ach iteration of the solver using Eqs. �51�, �52�, �57�, and �58�.
ontrol gains k= �k1 ,k2 , . . . ,k6� and filter parameters 

�
1 ,
2 ,
3 ,
4� were chosen by iteration. Up to a point, larger
alues of ki lead to faster convergence of the bicycle to the desired
rajectory. However, when the kis become too large, the bicycle is
nable to converge to the desired trajectory due to saturation of
he control input. Small values of 
i lead to better tracking but
igh control action, while large values of 
i lead to smoother
ontrol but more error.

The simulation was run using the disturbances in Eqs.
89�–�92�. The values of the control gain were chosen to be k
�10,10,1 ,1 ,10,10�, and the values of the filter parameter were
hosen to be 
= �0.05,0.05,0.05,0.05�.

Results of the simulation are presented in Figs. 2–4. Figure 2
hows that the tracking error in the DSC case is significantly less
han in the feedback linearization case. However, in the DSC case,
he control inputs u2 and u4 exhibit high frequency control action
n order to reject the disturbances, as can be seen in Fig. 3. Nu-
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the arrows indicate the direction of
to approximately zero.
erically integrating u4 smoothes the plot of u1. Figure 4 shows

41010-6 / Vol. 133, JULY 2011

om: http://dynamicsystems.asmedigitalcollection.asme.org/ on 11/28/2017
the behavior of the three sliding surfaces for x1 and the three
sliding surfaces for x2. Each sliding surface converges to approxi-
mately zero during the simulation.

This simulation was rerun with several different values for the
additive disturbances. While the dynamic surface controller was
able to converge for disturbances with large static offsets, the
differential equation solver had trouble converging for distur-
bances with large random components. When the solver was able
to converge, increasing the random component of the disturbances
increased the control action required for trajectory following.

6 Conclusions
DSC, a robust nonlinear control technique, is generally applied

to mismatched systems in strict feedback form. In this paper, we
describe a new method of defining states and state-dependent dis-
turbances that allowed us to transform a nonlinear mismatched
dynamic system into strict feedback form. The method developed
here could be used for other mismatched dynamic systems requir-
ing robust nonlinear control.

We applied this method to a MIMO extended-state kinematic
model of a bicycle, which originally was not in strict feedback
form. After the system was transformed into strict feedback form,
we were able to design a dynamic surface controller. We com-
pared the performance of the dynamic surface controller to that of
a controller designed using feedback linearization.

Both feedback linearization and DSC performed well when
controlling the disturbance-free bicycle model. However, when
disturbances are added, the feedback linearization controller was
unable to track the desired trajectory. Instead, a steady state error,
the magnitude of which was a function of the magnitude of the
additive disturbance, existed between the actual and desired tra-
jectory. The dynamic surface controller was able to reject the ad-
ditive disturbance and track the desired trajectory. However, sig-
nificant control action was required. By increasing the DSC filter
parameter, 
, the control became smoother but tracking error in-
creased. This demonstrates the trade-off between control action
and tracking error in all sliding controllers.

Acknowledgment
The authors would like to thank Hope Weiss for her helpful

comments. J.L.M. was funded by a NDSEG fellowship.

References
�1� Slotine, J. E., and Li, W., 1991, Applied Nonlinear Controls, Prentice-Hall,

0
50

100
150 0

5
10

150

0.5

1

1.5

2

S
4

Sliding surfaces for x
2

S
6

S
2

e stars indicate the point „0,0,0… and
reasing time. All surfaces converge
. Th
inc
Englewood Cliffs, NJ.

Transactions of the ASME

 Terms of Use: http://www.asme.org/about-asme/terms-of-use



J

Downloaded Fr
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