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Outline

 Generative Models

 Trajectory Reconstruction
 Regularized Inversion and Cross-Validation
 Nonlinear Optimization – Mathematical Programming 
 Linear Quadratic Optimal Control – Jerk Minimization
 Nonlinear Optimization – Pontryagin’s Maximum Principle (Ongoing Work)

 Analysis of Foraging in Echolocating Bats 

 A glimpse of Flock Reconstruction
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Self Steering Particle

• Position vector: 
• Natural Frenet frame:

• Unit tangent vector:

• :  Unit vectors spanning the plane perpendicular to the unit tangent vector.
• Speed of the trajectory: 
• Natural curvatures for the trajectory:         and  

Generative Model (Natural Frame Equations):
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Triple Integrator Model

• Position vector: 
• Velocity:
• Acceleration:
• Jerk (derivative of acceleration): 

Generative Model (Triple Integrator):
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Triple Integrator Model

• Position vector: 
• Velocity:
• Acceleration:
• Jerk (derivative of acceleration): 

Generative Model (Triple Integrator):

with
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Relationship between the models

Self steering particle model to Triple integrator model

Triple integrator model to Self steering particle model

• can be obtained by
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Trajectory Reconstruction as an Optimization Problem
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Regularized Inversion

Objective: Given a time series of noisy position data, reconstruct a trajectory to fit the data points.
Issues: The inverse problem is ill-posed.

• Naive solution is highly sensitive to noise.
• Non-unique.

Solution: Introduce regularization (by adding a penalty term for lack of smoothness of the trajectory).

How can we determine an optimal balance between goodness of fit and smoothness of the 
reconstructed trajectory?
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Ordinary Cross Validation !!!

Over-fitting Under-fitting



Ordinary Cross Validation (OCV)
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 Separate data set into two disjoint subsets:

 Estimation subset

 Validation subset

 Estimation subset is used for trajectory reconstruction.

 Validation subset is used to evaluate the performance of the reconstruction (fit-error).

 All possible estimation subsets are considered to avoid any local bias.

 An optimal amount  of regularization maximizes the performance over validation subset.

 We adopt leaving-one-out strategy in our line of works.



Regularized Inversion – Nonlinear Optimization (Mathematical Programming view)

Regularized Inversion

Observed Positions State; Controls

Dynamics Cost

 The problem is solved numerically over a restricted search space of piecewise constant 
functions (Matlab: fminunc).

 Reparametrizations (Cayley transform, exponential function) have been used to transform 
this problem into an optimization problem over a high-dimensional Cartesian space.

 However, this algorithm is capable of estimating curvature with higher resolution (sub-
frame adaptable).

 This approach is computationally very demanding.
 It may get stuck at a local optimum.
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Regularized Inversion – Linear Approach

Regularized Inversion

Observed Positions State; Controls

Dynamics Cost

 Integrability theory of linear-quadratic optimal control can be used to obtain an analytic 
solution.

 Regularization, in this case, penalizes high values of the jerk path integral.
 The 2/3-power law can be interpreted as a consequence of the minimization of jerk path 

integral.
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Regularized Inversion – Linear Approach – Linear Quadratic Optimal Control

 Apply path independence lemma.
 Symmetric bilinear form    
 Linear functional     

 Optimal Control Input:

 Optimal Initial Condition:

Solvability??
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Regularized Inversion – Linear Approach – Existence of optimal initial condition

 Optimal Initial Condition:

Proposition 3.1:*

Proposition 3.4:*

forms an observable pair for the 
trajectory reconstruction problem.

For the trajectory reconstruction
problem, the optimal initial condition is
uniquely solvable for almost any time
index set .

Theorem 3.5:*

Proposition 3.2:*

where                                                   .
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The solution of the Riccati equation assumes the form

for any                                   where                                                       ,
and        is the transition matrix for     . 

* B. Dey, P. S. Krishnaprasad, Trajectory Smoothing as a Linear Optimal Control Problem, Proc. 50th Annual Allerton Conference, 1490 - 1497, Monticello, IL, October 2012.



Regularized Inversion – Linear Approach – Co-state Based Approach

 Co-state Variable:  Co-state Dynamics:

 Boundary and Jump Conditions:

where,
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Regularized Inversion – Linear Approach – OCV
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 Let                          be a minimizer of:

 The corresponding reconstructed trajectory is               .

 Then, the OCV Cost is defined as:

 Hence, OCV estimate for     is defined as:



Regularized Inversion – Linear Approach – Numerical Results
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Regularized Inversion – Nonlinear Optimization (Pontryagin’s Maximum Principle)*
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 Optimal Control Problem:

 Control/Pre Hamiltonian:

 Optimal Control Input:

 Dynamics:

 Boundary and Jump Conditions:

* B. Dey, P. S. Krishnaprasad, Control-Theoretic Data Smoothing, CDC 2014 (8:30 AM, December 17, Wednesday, Session: Optimal Control II, Room: Georgia 2).



Analysis of Foraging in Echolocating Bats
(Collaboration with Cynthia Moss) 
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Bat Flight – Strategies and Segmentation
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 Classical Pursuit 
(CP)

 Motion Camouflage 
(MC/CATD)

Contrast function Contrast function

 Following Property
Velocity vector (        ) has a negative 
projection on the baseline vector   .

 Convergence
Baseline vector (  ) has a shrinking length



Bat Flight – Role Identification in Pursuit Events
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 Bat-Bat Interaction

Class IV

Class II

Class III

Class I



 Bat-Insect (Praying Mantis) Interaction

Bat Flight – Role Identification in Pursuit Events
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Class IV

Class II

Class III

Class I



Bat Flight – Analysis of Contrast Functions – Bat-Bat Interaction
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Bat Flight – Analysis of Contrast Functions – Bat-Insect Interaction
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Bat Flight – Analysis of Steering Control
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Strategy Steering Feedback  Law

Motion Camouflage [1,2]

(MC/CATD)

Classical Pursuit [3]

(CP)



Bat Flight – Analysis of Steering Control – Bat-Bat Interaction
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CP MC/CATD

Normalized Mismatch

Linear Gain

Delay (ms)

CP MC/CATD

Max. Correlation

Linear Gain

Delay (ms)

CP MC/CATD



Bat Flight – Analysis of Steering Control – Bat-Insect Interaction
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A glimpse of Flock Reconstruction
(Collaboration with Andrea Cavagna)
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Analysis of Flight Strategy for a Starling Flock – Trajectory Reconstruction
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Starling Flock – Flight Strategy
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Starling Flock – Importance of Neighborhood and Delay
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