

Synchronization in Neuronal Oscillator Networks

Biswadip Dey

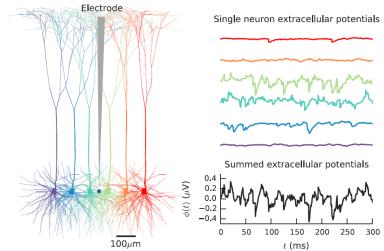
Department of Mechanical and Aerospace Engineering Princeton University

joint work with: Elizabeth Davison and Naomi E. Leonard

Workshop 4: Control and Observability of Network Dynamics Mathematical Biosciences Institute, Columbus, OH April 12, 2016

Motivation

- Synchronized activity is crucial for brain function:
 - 🗅 Basal ganglia
 - 🗅 Local Field Potential
 - fMRI/functional connectivity
- Knowledge about conditions for synchronization can lead to a better understanding of:
 - Deep Brain Stimulation
 - Transcranial Stimulation
 - System Identification
 - Testable predications
 - Measurable efficacy metrics for disease treatment

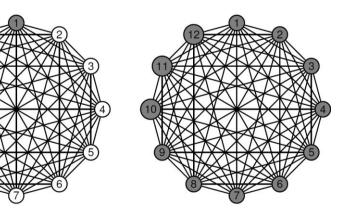


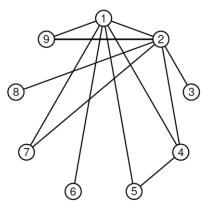
Linden et al. (2014), *LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons,* Frontiers in Neuroinformatics.

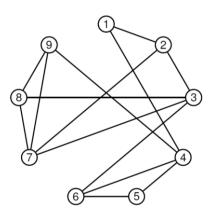
MIT Tech. Review (March 2016), Halo Neuroscience

Synchronization in Networks

- Asymptotically stable synchronization in a network of homogeneous *semi-passive* neuronal oscillators is guaranteed with sufficient coupling.¹
- Changes in the stability of synchronization/ consensus manifold result from:
 - 🗖 Graph Structure
 - Coupling
 - External Inputs
 - 🗅 Time Delay
 - Oscillator properties



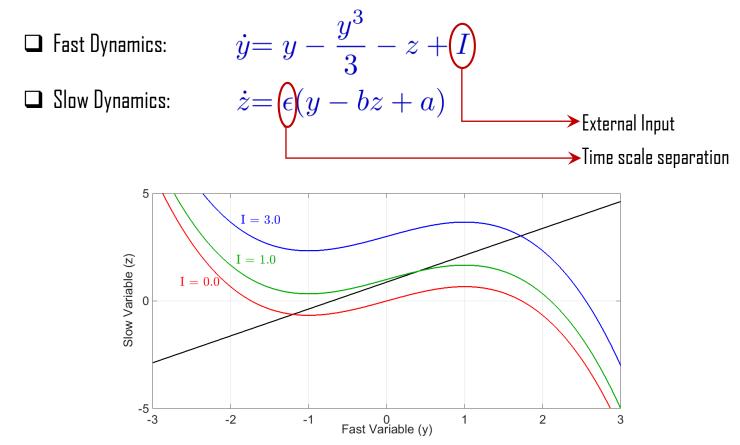




[1] E. Steur, I. Tyukin, and H. Nijmeijer (2009), *Semi-passivity and synchronization of diffusively coupled neuronal oscillators*, Physica D: Nonlinear Phenomena, 238(21):2119 - 2128.

Neuronal Oscillator: Fitzhugh-Nagumo (FN)

Second order dynamics for membrane potential



The dynamics of FN Oscillator model is strictly semi-passive.

- Outside a ball around the origin, a strictly semi-passive system behaves as a strictly passive system.

Network of FN Oscillators

Dynamics of a Single Neuron in the Network

$$\begin{array}{l} \circ \quad \dot{y}_i = y_i - \frac{y_i^3}{3} - z_i + I_i + u_i \\ \circ \quad \dot{z}_i = \epsilon(y_i - bz_i + a) \end{array} \\ \begin{array}{l} & \longrightarrow \text{Social Influence} \end{array}$$

Electrical gap junction coupling:

$$\circ \quad u_{i} = \sum_{j=1}^{n} \gamma_{ij}(y_{j} - y_{i}), \ \gamma_{ij} \ge 0$$

$$\Rightarrow \quad \mathbf{u} = -\Gamma \mathbf{y} \qquad \Gamma = \begin{bmatrix} \sum \gamma_{1j} & -\gamma_{12} & \cdots & -\gamma_{1n} \\ -\gamma_{21} & \sum \gamma_{2j} & \cdots & -\gamma_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ -\gamma_{n1} & -\gamma_{n2} & \cdots & \sum \gamma_{nj} \end{bmatrix}$$

The closed-loop system has ultimately bounded solutions.²

- In finite time, solutions of the closed-loop system enter a compact set that is invariant under the system dynamics.

[2] A. Pogromsky, T. Glad, and H. Nijmeijer (1999), On diffusion driven oscillations in coupled dynamical systems, International Journal of Bifurcation and Chaos, 9(4):629 - 644, 1999E.

A Sufficient Condition for Synchronization

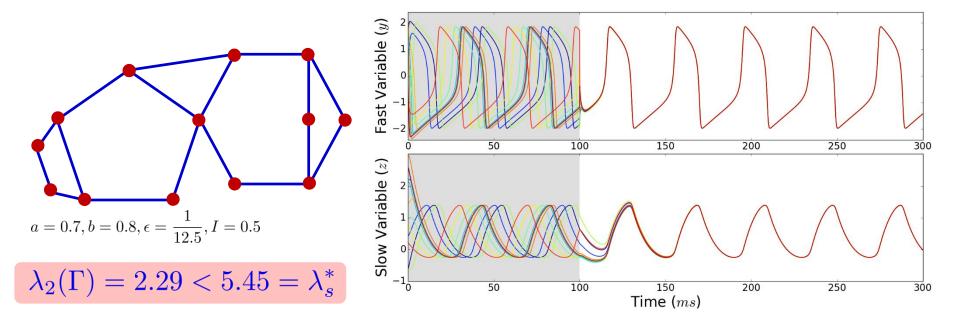
Lyapunov Function:

$$V = \frac{1}{2} \sum_{j=2}^{n} \left[(y_j - y_1)^2 + (z_j - z_1)^2 \right]$$

lacksquare Lyapunov Theorem exploits bounds (arising out of semi-passivity) on solution, i.e.

 $|y_i| < \beta_y, \ \forall i \in \{1, 2, \cdots, n\}$ \square Lower bound on second-smallest eigenvalue of the graph Laplacian.

$$\lambda_2(\Gamma) > 1 + \frac{1}{3}\beta_y^2 + \frac{1}{4b}\left(\epsilon + \frac{1}{\epsilon} - 2\right) \triangleq \lambda_s^*$$



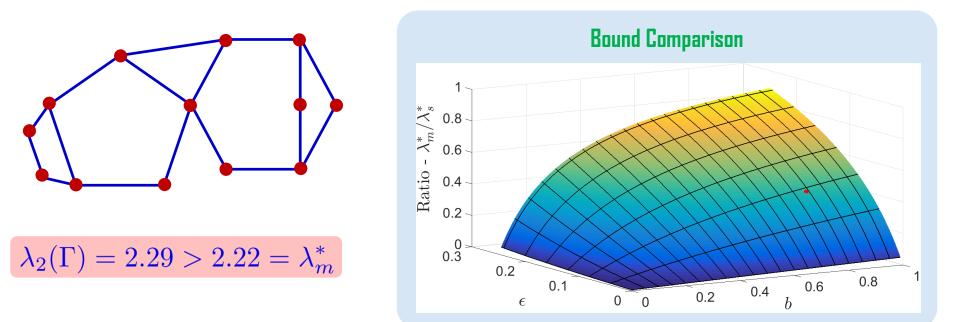
A Tighter Bound

□ Non-smooth Lyapunov Function:

$$V = \max_{i,j \in \{1, \cdots, n\}} |y_i - y_j| + \max_{i,j \in \{1, \cdots, n\}} |z_i - z_j|$$

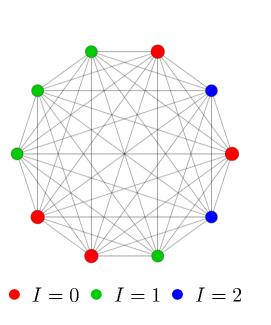
 $\hfill\square$ Lower bound on second-smallest eigenvalue of the graph Laplacian.

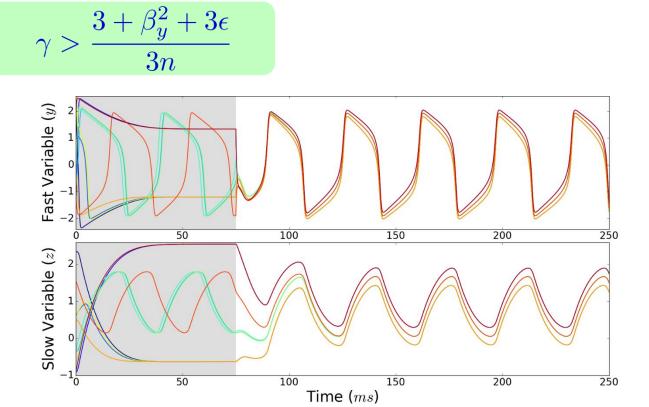
$$\lambda_2(\Gamma) > 1 + \frac{1}{3}\beta_y^2 + \epsilon \triangleq \lambda_m^*$$



Input Heterogeneity in a Complete Graph

- Synchronization is only possible when the sum of external input and social influence are same across the individuals.
- Input heterogeneity gives rise to multiple clusters in the network.
 Clusters are determined by input structure.





Reduction in a Complete Graph

 $\hfill\square$ Change of Coordinates:

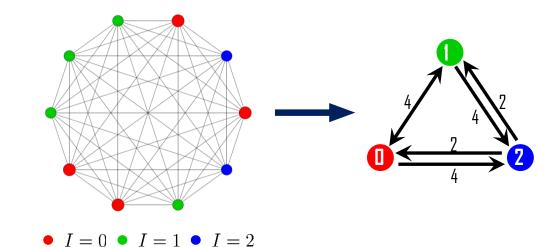
□ Average:

$$\xi_1 = \frac{1}{k} \sum_{j=1}^k y_j$$
 $\zeta_1 = \frac{1}{k} \sum_{j=1}^k z_j$

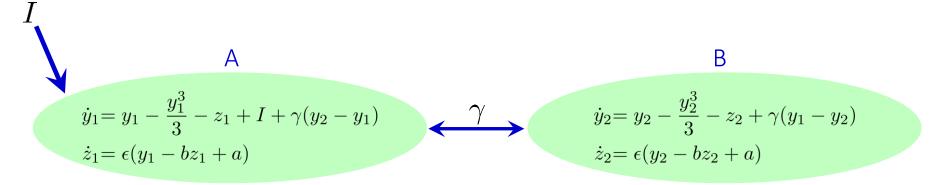
 $\hfill\square$ Difference from Average:

$$\xi_i = y_i - \frac{1}{k} \sum_{j=1}^k y_j \qquad \qquad \zeta_i = z_i - \frac{1}{k} \sum_{j=1}^k z_j \qquad i \in \{2, 3, \cdots, k\}$$

 When the coupling is strong enough for synchronization of individual oscillators, the dynamics of the average (of membrane potential and recovery variable) becomes identical to the dynamics of a single oscillator.



Entrainment in a Two Oscillator Network



The following regimes exist in this framework:

 \Box When $I < I_0$, both A and B are quiescent.

$$\Box$$
 When $I_0 < I < I_1$

 \Box and $\gamma < \gamma_{_{f0}}$, A is firing and B is quiescent.

- \square and $\gamma_{_{f0}} < \gamma < \gamma_{_{f1'}}$ both A and B are firing.
- $\hfill\square$ and $\gamma > \gamma_{_{f1}}$, both A and B become quiescent again.
- $\label{eq:horizontal_state} \begin{array}{ll} \square \mbox{ When } & I > I_1 \\ \square \mbox{ and } \gamma < \gamma_{s0} \mbox{, A is saturated and B is quiescent.} \\ \square \mbox{ and } \gamma > \gamma_{s0} \mbox{, both A and B are firing.} \end{array}$

Conclusion

- Sufficient condition for synchronization in networks of homogeneous FitzHugh-Nagumo oscillators.
- Emergence of cluster synchronization due to *input heterogeneity* in a complete graph.

