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Motivation

 Synchronized activity is crucial for brain

function:

 Basal ganglia

 Local Field Potential

 fMRI/functional connectivity

 Knowledge about conditions for synchronization

can lead to a better understanding of:

 Deep Brain Stimulation

 Transcranial Stimulation

 System Identification

 Testable predications

 Measurable efficacy metrics for disease

treatment

MIT Tech. Review (March 2016), Halo Neuroscience

Linden et al. (2014), LFPy: a tool for biophysical simulation of extracellular 
potentials generated by detailed model neurons, Frontiers in Neuroinformatics.



Synchronization in Networks

 Asymptotically stable synchronization in a network of homogeneous semi-passive neuronal oscillators

is guaranteed with sufficient coupling.1

[1] E. Steur, I. Tyukin, and H. Nijmeijer (2009), Semi-passivity and synchronization of diffusively coupled neuronal oscillators, Physica D: Nonlinear Phenomena, 
238(21):2119 - 2128.

 Changes in the stability of synchronization/ consensus

manifold result from:

 Graph Structure

 Coupling

 External Inputs

 Time Delay

 Oscillator properties



Neuronal Oscillator: Fitzhugh-Nagumo (FN)

 Second order dynamics for membrane potential

 Fast Dynamics: 

 Slow Dynamics:
External Input

Time scale separation

The dynamics of FN Oscillator model is strictly semi-passive.

- Outside a ball around the origin, a strictly semi-passive system behaves as a strictly passive

system.



 Dynamics of a Single Neuron in the Network

 Electrical gap junction coupling:

The closed-loop system has ultimately bounded solutions.2

- In finite time, solutions of the closed-loop system enter a compact set that is invariant under the

system dynamics.

Network of FN Oscillators

Social Influence

[2] A. Pogromsky, T. Glad, and H. Nijmeijer (1999), On diffusion driven oscillations in coupled dynamical systems, International Journal of Bifurcation and Chaos, 
9(4):629 - 644, 1999E. 



A Sufficient Condition for Synchronization

 Lyapunov Function: 

 Lyapunov Theorem exploits bounds (arising out of semi-passivity) on solution, i.e. 

 Lower bound on second-smallest eigenvalue of the graph Laplacian.



 Non-smooth Lyapunov Function: 

 Lower bound on second-smallest eigenvalue of the graph Laplacian.

A Tighter Bound

Bound Comparison



Input Heterogeneity in a Complete Graph

 Synchronization is only possible when the sum of external input and social influence are same 

across the individuals.

 Input heterogeneity gives rise to multiple clusters in the network.

 Clusters are determined by input structure.

 A sufficient condition for synchronization of individual clusters in a complete graph, with                                 

and              .



 Change of Coordinates:

 Average:

 Difference from Average:

Reduction in a Complete Graph
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 When the coupling is strong enough for

synchronization of individual oscillators,

the dynamics of the average (of

membrane potential and recovery

variable) becomes identical to the

dynamics of a single oscillator.



Entrainment in a Two Oscillator Network

A B

The following regimes exist in this framework:

 When            , both A and B are quiescent.

 When 

 and              , A is firing and B is quiescent.

 and                         , both A and B are firing.

 and              , both A and B become quiescent again.

 When            

 and              , A is saturated and B is quiescent.  

 and             , both A and B are firing.



 Sufficient condition for synchronization in networks of homogeneous FitzHugh-Nagumo 

oscillators.

 Emergence of cluster synchronization due to input heterogeneity in a complete graph.

Conclusion




