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Motivation

 Synchronized activity is crucial for brain

function:

 Basal ganglia

 Local Field Potential

 fMRI/functional connectivity

 Knowledge about conditions for synchronization

can lead to a better understanding of:

 Deep Brain Stimulation

 Transcranial Stimulation

 System Identification

 Testable predications

 Measurable efficacy metrics for disease

treatment

MIT Tech. Review (March 2016), Halo Neuroscience

Linden et al. (2014), LFPy: a tool for biophysical simulation of extracellular 
potentials generated by detailed model neurons, Frontiers in Neuroinformatics.



Synchronization in Networks

 Asymptotically stable synchronization in a network of homogeneous semi-passive neuronal oscillators

is guaranteed with sufficient coupling.1

[1] E. Steur, I. Tyukin, and H. Nijmeijer (2009), Semi-passivity and synchronization of diffusively coupled neuronal oscillators, Physica D: Nonlinear Phenomena, 
238(21):2119 - 2128.

 Changes in the stability of synchronization/ consensus

manifold result from:

 Graph Structure

 Coupling

 External Inputs

 Time Delay

 Oscillator properties



Neuronal Oscillator: Fitzhugh-Nagumo (FN)

 Second order dynamics for membrane potential

 Fast Dynamics: 

 Slow Dynamics:
External Input

Time scale separation

The dynamics of FN Oscillator model is strictly semi-passive.

- Outside a ball around the origin, a strictly semi-passive system behaves as a strictly passive

system.



 Dynamics of a Single Neuron in the Network

 Electrical gap junction coupling:

The closed-loop system has ultimately bounded solutions.2

- In finite time, solutions of the closed-loop system enter a compact set that is invariant under the

system dynamics.

Network of FN Oscillators

Social Influence

[2] A. Pogromsky, T. Glad, and H. Nijmeijer (1999), On diffusion driven oscillations in coupled dynamical systems, International Journal of Bifurcation and Chaos, 
9(4):629 - 644, 1999E. 



A Sufficient Condition for Synchronization

 Lyapunov Function: 

 Lyapunov Theorem exploits bounds (arising out of semi-passivity) on solution, i.e. 

 Lower bound on second-smallest eigenvalue of the graph Laplacian.



 Non-smooth Lyapunov Function: 

 Lower bound on second-smallest eigenvalue of the graph Laplacian.

A Tighter Bound

Bound Comparison



Input Heterogeneity in a Complete Graph

 Synchronization is only possible when the sum of external input and social influence are same 

across the individuals.

 Input heterogeneity gives rise to multiple clusters in the network.

 Clusters are determined by input structure.

 A sufficient condition for synchronization of individual clusters in a complete graph, with                                 

and              .



 Change of Coordinates:

 Average:

 Difference from Average:

Reduction in a Complete Graph
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 When the coupling is strong enough for

synchronization of individual oscillators,

the dynamics of the average (of

membrane potential and recovery

variable) becomes identical to the

dynamics of a single oscillator.



Entrainment in a Two Oscillator Network

A B

The following regimes exist in this framework:

 When            , both A and B are quiescent.

 When 

 and              , A is firing and B is quiescent.

 and                         , both A and B are firing.

 and              , both A and B become quiescent again.

 When            

 and              , A is saturated and B is quiescent.  

 and             , both A and B are firing.



 Sufficient condition for synchronization in networks of homogeneous FitzHugh-Nagumo 

oscillators.

 Emergence of cluster synchronization due to input heterogeneity in a complete graph.

Conclusion




