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O Synchronized activity is crucial for brain
function:

O Basal ganglia

Q Local Field Potential
Q fMRI/functional connectivity

O Knowledge about conditions for synchronization
can lead to a better understanding of:

O Deep Brain Stimulation
O Transcranial Stimulation
O System ldentification
O Testable predications

O Measurable efficacy metrics for disease
treatment
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potentials generated by detailed model neurons, Frontiers in Neuroinformatics.
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O Asymptatically stable synchronization in a network of homogeneous semi-passive neuronal oscillators
is guaranteed with sufficient coupling.

O Changes in the stability of synchronization/ consensus
manifold result from:
Q Graph Structure
@ Coupling
Q External Inputs
O Time Delay
Q Oscillator properties
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[1] E. Steur, I. Tyukin, and H. Nijmeijer (2009), Semi-passivity and synchronization of diffusively coupled neuronal oscillators, Physica D: Nonlinear Phenomena,
238(21):2119-2128.



O Second order dynamics for membrane potential
y3
O Fast Dynamics: Y=y — ? — 2+

Q Slow Dynamics: ,ézgy — bz +a)

> External Input

> [ime scale separation
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The dynamics of FN Oscillator model is strictly semi-passive.

- Qutside a ball around the origin, a strictly semi-passive system behaves as a strictly passive
system.



O Dynamics of a Single Neuron in the Network
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Q Electrical gap junction coupling:
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The closed-loop system has ultimately bounded solutions

- |n finite time, solutions of the closed-loop system enter a compact set that is invariant under the
system dynamics.

[2] A. Pogromsky, T. Glad, and H. Nijmeijer (1999), On diffusion driven oscillations in coupled dynamical systems, International Journal of Bifurcation and Chaos,
9(4):629 - 644, 1999E.
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O Lyapunov Function: V =

O | —

Q Lyapunov Theorem exploits bounds (arising out of semi-passivity) on solution, i.e.

|y2| <16ya VZG {1327 7n}

O Lower bound on second-smallest eigenvalue of the graph Laplacian.
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O Non-smooth Lyapunov Function:

V= max |y—y;| + max [z — 2z
2,]6{1,"',?’1} ZJJE{]‘J“'JR}

O Lower bound on second-smallest eigenvalue of the graph Laplacian.

1
)\Q(P)>1+§ﬁg+€é)\:n

Bound Comparison

m/ NS

Ratio - A

Ao(T) = 2.29 > 2.22 = \* 0§




O Synchronization is only possible when the sum of external input and social influence are same

across the individuals.

O Input heterogeneity gives rise to multiple clusters in the network.
O Clusters are determined by input structure.

O A sufficient condition for synchronization of individual clusters in a complete graph, with
Yij =7 > 0,1 # ] Yii = 0

and
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O Change of Coordinates:
O Average:
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O Difference from Average:

§i = Yi —

o =

= When the coupling is strong enough for
synchronization of individual oscillators,
the dynamics of the average (of
membrane potential and recovery
variable) becomes identical to the
dynamics of a single oscillator.
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The following regimes exist in this framework:

Q When < [, both A and B are quiescent.

QWhen Ip<I<Iy
Q and v < ~y,,. Aisfiring and B is guiescent.
Q andy,, <7 <,, both AandB are firing.
Q and?y > ¥, both A and B become quiescent again.

Q When I >1
Q and v < 7v,,.Als saturated and B is quiescent.
Q and v > . both A and B are firing.



Q Sufficient condition for synchronization in networks of homogeneous FitzHugh-Nagumo
oscillators.

O Emergence of cluster synchronization due to /ot heterogeneityin a complete graph.
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Thank You!



