Nonlinear Control (MAE 544 | Princeton University | Fall 2017)
Instructor:      Biswadip Dey
Grading Policy:
      25% - Bi-weekly Assignments (5 assignments)
      50% - Midterms (2 take-home exams)
      25% - Course Project (Deliverables will consist of a final report and an oral presentation)
Core Topics
      ▸
Brief overview of relevant topics from linear algebra and advanced calculus
      ▸
Introduction to differential geometry - smooth manifolds and tangent/cotangent spaces, vector fields
      ▸
Lie groups and related concepts
      ▸
Lie bracket of vector fields
      ▸
Controllability properties of nonlinear systems
      ▸
Lyapunov stability theory and local stabilization
      ▸
Passivity and stabilization of dissipative systems
      ▸
Energy shaping and controlled Lagrangian
      ▸
Feedback linearization
Lecture Notes and Reading Material
      ▸
Lecture 1-2: Background and A Brief Review of Linear Algebra and Calculus
              ▪
September 14: Lecture Note - 1
(Basic Introduction; Examples of Nonlinear Systems)
                     
Reading Material:
Paper-1,
Paper-2,
Paper-3
              ▪
September 19: Lecture Note - 2
(Group, Ring, Field; Vector Space; Normed and Inner-Product Space)
      ▸
Lecture 3-8: Introduction to Differential Geometry
              ▪
September 21: Lecture Note - 3
(Dynamics on Non-Euclidean Space - Rigid Body Dynamics)
              ▪
September 26: Lecture Note - 4
(Manifolds; Charts and Atlases)
              ▪
September 28: Lecture Note - 5
(Charts and Atlases Contd.; Smooth Structures; Smooth Functions)
              ▪
October 05: Lecture Note - 6
(Tangent Vectors - Tangents to Smooth Curves, Derivation)
              ▪
October 10: Lecture Note - 7
(Tangent Space; Derivative of Smooth Functions; Tangent Bundle)
              ▪
October 12: Lecture Note - 8
(Vector Field; Cotangent Space; Cotangent Bundle; Differential 1-Form)
      ▸
Lecture 9-11: Control Systems as Vector Fields
              ▪
October 17: Lecture Note - 9
(Vector Fields as Derivations; Affine Control Systems; Intro. to Lie-Bracket)
                     
Reading Material:
Paper-4,
Paper-5,
Paper-6,
Paper-7,
Paper-8,
Paper-9,
Paper-10
              ▪
October 19: Lecture Note - 10
(Lie-Bracket of Vector Fields; Lie-Algebra)
                     
Reading Material:
Paper-11,
Paper-12,
Paper-13,
Paper-14
              ▪
October 24: Lecture Note - 11
(Lie-Group; Left-Invariant Vector Fields; Integral Curves)
                     
Reading Material:
Paper-15,
Paper-16,
Paper-17
      ▸
Lecture 12-14: Nonlinear Controllability
              ▪
October 25: Lecture Note - 12
(Exponential Map; Distribution; Frobenius Theorem; Intro. to Controllability)
                     
Reading Assignment:
Chapter 8 of "Nonlinear Systems: Analysis, Stability, and Control" (Ref.#3)
              ▪
October 26: Lecture Note - 13
(Accessibility, Controllability and STLC; Lie-Algebraic Rank Condn.)
              ▪
November 07: Lecture Note - 14
(Stronger Form of Accessibility; More results on Controllability; Examples)
                     
Reading Assignment:
Chapter 3.1 of "Nonlinear Dynamical Control Systems" (Ref.#1)
                     
Reading Assignment:
Notes on Nonlinear Controllability: Andrew D. Lewis
      ▸
Lecture 15-16: Stabilization using Lyapunov Stability Theory
              ▪
November 09: Lecture Note - 15
(Stability in the Sense of Lyapunov; Lyapunov’s Direct Method)
                     
Reading Assignment:
Chapter 5.1-5.3 of "Nonlinear Systems: Analysis, Stability, and Control" (Ref.#3)
                     
Reading Material:
Paper-18,
Paper-19,
Paper-20,
Paper-21
              ▪
November 14: Lecture Note - 16
(Lyapunov’s Indirect Method; Feedback Stabilization; Domain of Attraction)
                     
Reading Assignment:
Chapter 5.7-5.9 of "Nonlinear Systems: Analysis, Stability, and Control" (Ref.#3)
                     
Reading Assignment:
Chapter 6.1 of "Nonlinear Systems: Analysis, Stability, and Control" (Ref.#3)
      ▸
Lecture 17-18: Passivity and Dissipative System
              ▪
November 16: Lecture Note - 17
(L-p Spaces; Input-output Stability; Small Gain Theorem)
                     
Reading Assignment:
Chapter 4.2-4.3 of "Nonlinear Systems: Analysis, Stability, and Control" (Ref.#3)
              ▪
November 21: Lecture Note - 18
(Passivity and Dissipation Inequality; Input-to-State Stability (ISS))
                     
Reading Assignment:
Chapter 4.4 of "Nonlinear Systems: Analysis, Stability, and Control" (Ref.#3)
      ▸
Lecture 19-21: Control Lyapunov and Energy Shaping Methods
              ▪
November 28: Lecture Note - 19
(Control Lyapunov Function (CLF); Backstepping)
                     
Reading Assignment:
Chapter 6.8 of "Nonlinear Systems: Analysis, Stability, and Control" (Ref.#3)
                     
Reading Material:
Paper-22,
Paper-23,
Paper-24
              ▪
November 29: Lecture Note - 20
(Passivity Based Control; Intro. to Controlled Lagrangian)
              ▪
November 30: Lecture Note - 21
(Controlled Lagrangian; Intro. to Feedback Linearization)
      ▸
Lecture 22-24: State and Output Feedback Linearization
              ▪
December 5: Lecture Note - 22
(Feedback Linearization for SISO Systems; Normal Form)
              ▪
December 6: Lecture Note - 23
(State-Space Exact Linearization; Zero Dynamics)
              ▪
December 7: Lecture Note - 24
(Zero Dynamics; Tracking and Stabilization)
                     
Reading Assignment:
Chapter 9 of "Nonlinear Systems: Analysis, Stability, and Control" (Ref.#3)
Homework Problem Sets
      ▸
Homework 1:
Problem Set # 1
(Due: 10/05/2017)
      ▸
Homework 2:
Problem Set # 2
(Due: 10/24/2017)
      ▸
Homework 3:
Problem Set # 3
(Due: 11/09/2017)
      ▸
Homework 4:
Problem Set # 4
(Due: 12/07/2017)
      ▸
Homework 5:
Problem Set # 5
(Due: 12/14/2017)
References
      ▸ (1)
Nijmeijer, H., van der Schaft, A. (1990) Nonlinear Dynamical Control Systems, Springer New York.
      ▸ (2)
Isidori, A. (1995) Nonlinear Control Systems, Springer-Verlag London.
      ▸ (3)
Sastry, S. S. (1999) Nonlinear Systems: Analysis, Stability, and Control, Springer-Verlag New York.
      ▸ (4)
Schutz, B. F.(1980) Geometrical Methods of Mathematical Physics, Cambridge University Press.
      ▸ (5)
Guillemin, V., Pollack, A. (Reprint, 2010) Differential Topology, American Mathematical Society.